/* -- translated by f2c (version 20191129). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* > \brief DGESV computes the solution to system of linear equations A * X = B for GE matrices =========== DOCUMENTATION =========== Online html documentation available at http://www.netlib.org/lapack/explore-html/ > \htmlonly > Download DGESV + dependencies > > [TGZ] > > [ZIP] > > [TXT] > \endhtmlonly Definition: =========== SUBROUTINE DGESV( N, NRHS, A, LDA, IPIV, B, LDB, INFO ) INTEGER INFO, LDA, LDB, N, NRHS INTEGER IPIV( * ) DOUBLE PRECISION A( LDA, * ), B( LDB, * ) > \par Purpose: ============= > > \verbatim > > DGESV computes the solution to a real system of linear equations > A * X = B, > where A is an N-by-N matrix and X and B are N-by-NRHS matrices. > > The LU decomposition with partial pivoting and row interchanges is > used to factor A as > A = P * L * U, > where P is a permutation matrix, L is unit lower triangular, and U is > upper triangular. The factored form of A is then used to solve the > system of equations A * X = B. > \endverbatim Arguments: ========== > \param[in] N > \verbatim > N is INTEGER > The number of linear equations, i.e., the order of the > matrix A. N >= 0. > \endverbatim > > \param[in] NRHS > \verbatim > NRHS is INTEGER > The number of right hand sides, i.e., the number of columns > of the matrix B. NRHS >= 0. > \endverbatim > > \param[in,out] A > \verbatim > A is DOUBLE PRECISION array, dimension (LDA,N) > On entry, the N-by-N coefficient matrix A. > On exit, the factors L and U from the factorization > A = P*L*U; the unit diagonal elements of L are not stored. > \endverbatim > > \param[in] LDA > \verbatim > LDA is INTEGER > The leading dimension of the array A. LDA >= max(1,N). > \endverbatim > > \param[out] IPIV > \verbatim > IPIV is INTEGER array, dimension (N) > The pivot indices that define the permutation matrix P; > row i of the matrix was interchanged with row IPIV(i). > \endverbatim > > \param[in,out] B > \verbatim > B is DOUBLE PRECISION array, dimension (LDB,NRHS) > On entry, the N-by-NRHS matrix of right hand side matrix B. > On exit, if INFO = 0, the N-by-NRHS solution matrix X. > \endverbatim > > \param[in] LDB > \verbatim > LDB is INTEGER > The leading dimension of the array B. LDB >= max(1,N). > \endverbatim > > \param[out] INFO > \verbatim > INFO is INTEGER > = 0: successful exit > < 0: if INFO = -i, the i-th argument had an illegal value > > 0: if INFO = i, U(i,i) is exactly zero. The factorization > has been completed, but the factor U is exactly > singular, so the solution could not be computed. > \endverbatim Authors: ======== > \author Univ. of Tennessee > \author Univ. of California Berkeley > \author Univ. of Colorado Denver > \author NAG Ltd. > \date November 2011 > \ingroup doubleGEsolve ===================================================================== Subroutine */ int igraphdgesv_(integer *n, integer *nrhs, doublereal *a, integer *lda, integer *ipiv, doublereal *b, integer *ldb, integer *info) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, i__1; /* Local variables */ extern /* Subroutine */ int igraphdgetrf_(integer *, integer *, doublereal *, integer *, integer *, integer *), igraphxerbla_(char *, integer *, ftnlen), igraphdgetrs_(char *, integer *, integer *, doublereal *, integer *, integer *, doublereal *, integer *, integer *); /* -- LAPACK driver routine (version 3.4.0) -- -- LAPACK is a software package provided by Univ. of Tennessee, -- -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- November 2011 ===================================================================== Test the input parameters. Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --ipiv; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; /* Function Body */ *info = 0; if (*n < 0) { *info = -1; } else if (*nrhs < 0) { *info = -2; } else if (*lda < max(1,*n)) { *info = -4; } else if (*ldb < max(1,*n)) { *info = -7; } if (*info != 0) { i__1 = -(*info); igraphxerbla_("DGESV ", &i__1, (ftnlen)6); return 0; } /* Compute the LU factorization of A. */ igraphdgetrf_(n, n, &a[a_offset], lda, &ipiv[1], info); if (*info == 0) { /* Solve the system A*X = B, overwriting B with X. */ igraphdgetrs_("No transpose", n, nrhs, &a[a_offset], lda, &ipiv[1], &b[ b_offset], ldb, info); } return 0; /* End of DGESV */ } /* igraphdgesv_ */