/* -- translated by f2c (version 20191129). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Table of constant values */ static integer c__1 = 1; static doublereal c_b8 = -1.; /* > \brief \b DGETF2 computes the LU factorization of a general m-by-n matrix using partial pivoting with row interchanges (unblocked algorithm). =========== DOCUMENTATION =========== Online html documentation available at http://www.netlib.org/lapack/explore-html/ > \htmlonly > Download DGETF2 + dependencies > > [TGZ] > > [ZIP] > > [TXT] > \endhtmlonly Definition: =========== SUBROUTINE DGETF2( M, N, A, LDA, IPIV, INFO ) INTEGER INFO, LDA, M, N INTEGER IPIV( * ) DOUBLE PRECISION A( LDA, * ) > \par Purpose: ============= > > \verbatim > > DGETF2 computes an LU factorization of a general m-by-n matrix A > using partial pivoting with row interchanges. > > The factorization has the form > A = P * L * U > where P is a permutation matrix, L is lower triangular with unit > diagonal elements (lower trapezoidal if m > n), and U is upper > triangular (upper trapezoidal if m < n). > > This is the right-looking Level 2 BLAS version of the algorithm. > \endverbatim Arguments: ========== > \param[in] M > \verbatim > M is INTEGER > The number of rows of the matrix A. M >= 0. > \endverbatim > > \param[in] N > \verbatim > N is INTEGER > The number of columns of the matrix A. N >= 0. > \endverbatim > > \param[in,out] A > \verbatim > A is DOUBLE PRECISION array, dimension (LDA,N) > On entry, the m by n matrix to be factored. > On exit, the factors L and U from the factorization > A = P*L*U; the unit diagonal elements of L are not stored. > \endverbatim > > \param[in] LDA > \verbatim > LDA is INTEGER > The leading dimension of the array A. LDA >= max(1,M). > \endverbatim > > \param[out] IPIV > \verbatim > IPIV is INTEGER array, dimension (min(M,N)) > The pivot indices; for 1 <= i <= min(M,N), row i of the > matrix was interchanged with row IPIV(i). > \endverbatim > > \param[out] INFO > \verbatim > INFO is INTEGER > = 0: successful exit > < 0: if INFO = -k, the k-th argument had an illegal value > > 0: if INFO = k, U(k,k) is exactly zero. The factorization > has been completed, but the factor U is exactly > singular, and division by zero will occur if it is used > to solve a system of equations. > \endverbatim Authors: ======== > \author Univ. of Tennessee > \author Univ. of California Berkeley > \author Univ. of Colorado Denver > \author NAG Ltd. > \date September 2012 > \ingroup doubleGEcomputational ===================================================================== Subroutine */ int igraphdgetf2_(integer *m, integer *n, doublereal *a, integer * lda, integer *ipiv, integer *info) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3; doublereal d__1; /* Local variables */ integer i__, j, jp; extern /* Subroutine */ int igraphdger_(integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *), igraphdscal_(integer *, doublereal *, doublereal *, integer *); doublereal sfmin; extern /* Subroutine */ int igraphdswap_(integer *, doublereal *, integer *, doublereal *, integer *); extern doublereal igraphdlamch_(char *); extern integer igraphidamax_(integer *, doublereal *, integer *); extern /* Subroutine */ int igraphxerbla_(char *, integer *, ftnlen); /* -- LAPACK computational routine (version 3.4.2) -- -- LAPACK is a software package provided by Univ. of Tennessee, -- -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- September 2012 ===================================================================== Test the input parameters. Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --ipiv; /* Function Body */ *info = 0; if (*m < 0) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*lda < max(1,*m)) { *info = -4; } if (*info != 0) { i__1 = -(*info); igraphxerbla_("DGETF2", &i__1, (ftnlen)6); return 0; } /* Quick return if possible */ if (*m == 0 || *n == 0) { return 0; } /* Compute machine safe minimum */ sfmin = igraphdlamch_("S"); i__1 = min(*m,*n); for (j = 1; j <= i__1; ++j) { /* Find pivot and test for singularity. */ i__2 = *m - j + 1; jp = j - 1 + igraphidamax_(&i__2, &a[j + j * a_dim1], &c__1); ipiv[j] = jp; if (a[jp + j * a_dim1] != 0.) { /* Apply the interchange to columns 1:N. */ if (jp != j) { igraphdswap_(n, &a[j + a_dim1], lda, &a[jp + a_dim1], lda); } /* Compute elements J+1:M of J-th column. */ if (j < *m) { if ((d__1 = a[j + j * a_dim1], abs(d__1)) >= sfmin) { i__2 = *m - j; d__1 = 1. / a[j + j * a_dim1]; igraphdscal_(&i__2, &d__1, &a[j + 1 + j * a_dim1], &c__1); } else { i__2 = *m - j; for (i__ = 1; i__ <= i__2; ++i__) { a[j + i__ + j * a_dim1] /= a[j + j * a_dim1]; /* L20: */ } } } } else if (*info == 0) { *info = j; } if (j < min(*m,*n)) { /* Update trailing submatrix. */ i__2 = *m - j; i__3 = *n - j; igraphdger_(&i__2, &i__3, &c_b8, &a[j + 1 + j * a_dim1], &c__1, &a[j + ( j + 1) * a_dim1], lda, &a[j + 1 + (j + 1) * a_dim1], lda); } /* L10: */ } return 0; /* End of DGETF2 */ } /* igraphdgetf2_ */