/* -- translated by f2c (version 20191129). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Table of constant values */ static integer c__1 = 1; static integer c_n1 = -1; static doublereal c_b16 = 1.; static doublereal c_b19 = -1.; /* > \brief \b DGETRF =========== DOCUMENTATION =========== Online html documentation available at http://www.netlib.org/lapack/explore-html/ > \htmlonly > Download DGETRF + dependencies > > [TGZ] > > [ZIP] > > [TXT] > \endhtmlonly Definition: =========== SUBROUTINE DGETRF( M, N, A, LDA, IPIV, INFO ) INTEGER INFO, LDA, M, N INTEGER IPIV( * ) DOUBLE PRECISION A( LDA, * ) > \par Purpose: ============= > > \verbatim > > DGETRF computes an LU factorization of a general M-by-N matrix A > using partial pivoting with row interchanges. > > The factorization has the form > A = P * L * U > where P is a permutation matrix, L is lower triangular with unit > diagonal elements (lower trapezoidal if m > n), and U is upper > triangular (upper trapezoidal if m < n). > > This is the right-looking Level 3 BLAS version of the algorithm. > \endverbatim Arguments: ========== > \param[in] M > \verbatim > M is INTEGER > The number of rows of the matrix A. M >= 0. > \endverbatim > > \param[in] N > \verbatim > N is INTEGER > The number of columns of the matrix A. N >= 0. > \endverbatim > > \param[in,out] A > \verbatim > A is DOUBLE PRECISION array, dimension (LDA,N) > On entry, the M-by-N matrix to be factored. > On exit, the factors L and U from the factorization > A = P*L*U; the unit diagonal elements of L are not stored. > \endverbatim > > \param[in] LDA > \verbatim > LDA is INTEGER > The leading dimension of the array A. LDA >= max(1,M). > \endverbatim > > \param[out] IPIV > \verbatim > IPIV is INTEGER array, dimension (min(M,N)) > The pivot indices; for 1 <= i <= min(M,N), row i of the > matrix was interchanged with row IPIV(i). > \endverbatim > > \param[out] INFO > \verbatim > INFO is INTEGER > = 0: successful exit > < 0: if INFO = -i, the i-th argument had an illegal value > > 0: if INFO = i, U(i,i) is exactly zero. The factorization > has been completed, but the factor U is exactly > singular, and division by zero will occur if it is used > to solve a system of equations. > \endverbatim Authors: ======== > \author Univ. of Tennessee > \author Univ. of California Berkeley > \author Univ. of Colorado Denver > \author NAG Ltd. > \date November 2011 > \ingroup doubleGEcomputational ===================================================================== Subroutine */ int igraphdgetrf_(integer *m, integer *n, doublereal *a, integer * lda, integer *ipiv, integer *info) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5; /* Local variables */ integer i__, j, jb, nb; extern /* Subroutine */ int igraphdgemm_(char *, char *, integer *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *); integer iinfo; extern /* Subroutine */ int igraphdtrsm_(char *, char *, char *, char *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *), igraphdgetf2_( integer *, integer *, doublereal *, integer *, integer *, integer *), igraphxerbla_(char *, integer *, ftnlen); extern integer igraphilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *, ftnlen, ftnlen); extern /* Subroutine */ int igraphdlaswp_(integer *, doublereal *, integer *, integer *, integer *, integer *, integer *); /* -- LAPACK computational routine (version 3.4.0) -- -- LAPACK is a software package provided by Univ. of Tennessee, -- -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- November 2011 ===================================================================== Test the input parameters. Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --ipiv; /* Function Body */ *info = 0; if (*m < 0) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*lda < max(1,*m)) { *info = -4; } if (*info != 0) { i__1 = -(*info); igraphxerbla_("DGETRF", &i__1, (ftnlen)6); return 0; } /* Quick return if possible */ if (*m == 0 || *n == 0) { return 0; } /* Determine the block size for this environment. */ nb = igraphilaenv_(&c__1, "DGETRF", " ", m, n, &c_n1, &c_n1, (ftnlen)6, (ftnlen) 1); if (nb <= 1 || nb >= min(*m,*n)) { /* Use unblocked code. */ igraphdgetf2_(m, n, &a[a_offset], lda, &ipiv[1], info); } else { /* Use blocked code. */ i__1 = min(*m,*n); i__2 = nb; for (j = 1; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) { /* Computing MIN */ i__3 = min(*m,*n) - j + 1; jb = min(i__3,nb); /* Factor diagonal and subdiagonal blocks and test for exact singularity. */ i__3 = *m - j + 1; igraphdgetf2_(&i__3, &jb, &a[j + j * a_dim1], lda, &ipiv[j], &iinfo); /* Adjust INFO and the pivot indices. */ if (*info == 0 && iinfo > 0) { *info = iinfo + j - 1; } /* Computing MIN */ i__4 = *m, i__5 = j + jb - 1; i__3 = min(i__4,i__5); for (i__ = j; i__ <= i__3; ++i__) { ipiv[i__] = j - 1 + ipiv[i__]; /* L10: */ } /* Apply interchanges to columns 1:J-1. */ i__3 = j - 1; i__4 = j + jb - 1; igraphdlaswp_(&i__3, &a[a_offset], lda, &j, &i__4, &ipiv[1], &c__1); if (j + jb <= *n) { /* Apply interchanges to columns J+JB:N. */ i__3 = *n - j - jb + 1; i__4 = j + jb - 1; igraphdlaswp_(&i__3, &a[(j + jb) * a_dim1 + 1], lda, &j, &i__4, & ipiv[1], &c__1); /* Compute block row of U. */ i__3 = *n - j - jb + 1; igraphdtrsm_("Left", "Lower", "No transpose", "Unit", &jb, &i__3, & c_b16, &a[j + j * a_dim1], lda, &a[j + (j + jb) * a_dim1], lda); if (j + jb <= *m) { /* Update trailing submatrix. */ i__3 = *m - j - jb + 1; i__4 = *n - j - jb + 1; igraphdgemm_("No transpose", "No transpose", &i__3, &i__4, &jb, &c_b19, &a[j + jb + j * a_dim1], lda, &a[j + (j + jb) * a_dim1], lda, &c_b16, &a[j + jb + (j + jb) * a_dim1], lda); } } /* L20: */ } } return 0; /* End of DGETRF */ } /* igraphdgetrf_ */