/* -- translated by f2c (version 20191129). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Table of constant values */ static integer c__1 = 1; static doublereal c_b12 = 1.; static integer c_n1 = -1; /* > \brief \b DGETRS =========== DOCUMENTATION =========== Online html documentation available at http://www.netlib.org/lapack/explore-html/ > \htmlonly > Download DGETRS + dependencies > > [TGZ] > > [ZIP] > > [TXT] > \endhtmlonly Definition: =========== SUBROUTINE DGETRS( TRANS, N, NRHS, A, LDA, IPIV, B, LDB, INFO ) CHARACTER TRANS INTEGER INFO, LDA, LDB, N, NRHS INTEGER IPIV( * ) DOUBLE PRECISION A( LDA, * ), B( LDB, * ) > \par Purpose: ============= > > \verbatim > > DGETRS solves a system of linear equations > A * X = B or A**T * X = B > with a general N-by-N matrix A using the LU factorization computed > by DGETRF. > \endverbatim Arguments: ========== > \param[in] TRANS > \verbatim > TRANS is CHARACTER*1 > Specifies the form of the system of equations: > = 'N': A * X = B (No transpose) > = 'T': A**T* X = B (Transpose) > = 'C': A**T* X = B (Conjugate transpose = Transpose) > \endverbatim > > \param[in] N > \verbatim > N is INTEGER > The order of the matrix A. N >= 0. > \endverbatim > > \param[in] NRHS > \verbatim > NRHS is INTEGER > The number of right hand sides, i.e., the number of columns > of the matrix B. NRHS >= 0. > \endverbatim > > \param[in] A > \verbatim > A is DOUBLE PRECISION array, dimension (LDA,N) > The factors L and U from the factorization A = P*L*U > as computed by DGETRF. > \endverbatim > > \param[in] LDA > \verbatim > LDA is INTEGER > The leading dimension of the array A. LDA >= max(1,N). > \endverbatim > > \param[in] IPIV > \verbatim > IPIV is INTEGER array, dimension (N) > The pivot indices from DGETRF; for 1<=i<=N, row i of the > matrix was interchanged with row IPIV(i). > \endverbatim > > \param[in,out] B > \verbatim > B is DOUBLE PRECISION array, dimension (LDB,NRHS) > On entry, the right hand side matrix B. > On exit, the solution matrix X. > \endverbatim > > \param[in] LDB > \verbatim > LDB is INTEGER > The leading dimension of the array B. LDB >= max(1,N). > \endverbatim > > \param[out] INFO > \verbatim > INFO is INTEGER > = 0: successful exit > < 0: if INFO = -i, the i-th argument had an illegal value > \endverbatim Authors: ======== > \author Univ. of Tennessee > \author Univ. of California Berkeley > \author Univ. of Colorado Denver > \author NAG Ltd. > \date November 2011 > \ingroup doubleGEcomputational ===================================================================== Subroutine */ int igraphdgetrs_(char *trans, integer *n, integer *nrhs, doublereal *a, integer *lda, integer *ipiv, doublereal *b, integer * ldb, integer *info) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, i__1; /* Local variables */ extern logical igraphlsame_(char *, char *); extern /* Subroutine */ int igraphdtrsm_(char *, char *, char *, char *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *), igraphxerbla_( char *, integer *, ftnlen), igraphdlaswp_(integer *, doublereal *, integer *, integer *, integer *, integer *, integer *); logical notran; /* -- LAPACK computational routine (version 3.4.0) -- -- LAPACK is a software package provided by Univ. of Tennessee, -- -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- November 2011 ===================================================================== Test the input parameters. Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --ipiv; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; /* Function Body */ *info = 0; notran = igraphlsame_(trans, "N"); if (! notran && ! igraphlsame_(trans, "T") && ! igraphlsame_( trans, "C")) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*nrhs < 0) { *info = -3; } else if (*lda < max(1,*n)) { *info = -5; } else if (*ldb < max(1,*n)) { *info = -8; } if (*info != 0) { i__1 = -(*info); igraphxerbla_("DGETRS", &i__1, (ftnlen)6); return 0; } /* Quick return if possible */ if (*n == 0 || *nrhs == 0) { return 0; } if (notran) { /* Solve A * X = B. Apply row interchanges to the right hand sides. */ igraphdlaswp_(nrhs, &b[b_offset], ldb, &c__1, n, &ipiv[1], &c__1); /* Solve L*X = B, overwriting B with X. */ igraphdtrsm_("Left", "Lower", "No transpose", "Unit", n, nrhs, &c_b12, &a[ a_offset], lda, &b[b_offset], ldb); /* Solve U*X = B, overwriting B with X. */ igraphdtrsm_("Left", "Upper", "No transpose", "Non-unit", n, nrhs, &c_b12, & a[a_offset], lda, &b[b_offset], ldb); } else { /* Solve A**T * X = B. Solve U**T *X = B, overwriting B with X. */ igraphdtrsm_("Left", "Upper", "Transpose", "Non-unit", n, nrhs, &c_b12, &a[ a_offset], lda, &b[b_offset], ldb); /* Solve L**T *X = B, overwriting B with X. */ igraphdtrsm_("Left", "Lower", "Transpose", "Unit", n, nrhs, &c_b12, &a[ a_offset], lda, &b[b_offset], ldb); /* Apply row interchanges to the solution vectors. */ igraphdlaswp_(nrhs, &b[b_offset], ldb, &c__1, n, &ipiv[1], &c_n1); } return 0; /* End of DGETRS */ } /* igraphdgetrs_ */