/* -- translated by f2c (version 20191129). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* > \brief \b DLAEV2 computes the eigenvalues and eigenvectors of a 2-by-2 symmetric/Hermitian matrix. =========== DOCUMENTATION =========== Online html documentation available at http://www.netlib.org/lapack/explore-html/ > \htmlonly > Download DLAEV2 + dependencies > > [TGZ] > > [ZIP] > > [TXT] > \endhtmlonly Definition: =========== SUBROUTINE DLAEV2( A, B, C, RT1, RT2, CS1, SN1 ) DOUBLE PRECISION A, B, C, CS1, RT1, RT2, SN1 > \par Purpose: ============= > > \verbatim > > DLAEV2 computes the eigendecomposition of a 2-by-2 symmetric matrix > [ A B ] > [ B C ]. > On return, RT1 is the eigenvalue of larger absolute value, RT2 is the > eigenvalue of smaller absolute value, and (CS1,SN1) is the unit right > eigenvector for RT1, giving the decomposition > > [ CS1 SN1 ] [ A B ] [ CS1 -SN1 ] = [ RT1 0 ] > [-SN1 CS1 ] [ B C ] [ SN1 CS1 ] [ 0 RT2 ]. > \endverbatim Arguments: ========== > \param[in] A > \verbatim > A is DOUBLE PRECISION > The (1,1) element of the 2-by-2 matrix. > \endverbatim > > \param[in] B > \verbatim > B is DOUBLE PRECISION > The (1,2) element and the conjugate of the (2,1) element of > the 2-by-2 matrix. > \endverbatim > > \param[in] C > \verbatim > C is DOUBLE PRECISION > The (2,2) element of the 2-by-2 matrix. > \endverbatim > > \param[out] RT1 > \verbatim > RT1 is DOUBLE PRECISION > The eigenvalue of larger absolute value. > \endverbatim > > \param[out] RT2 > \verbatim > RT2 is DOUBLE PRECISION > The eigenvalue of smaller absolute value. > \endverbatim > > \param[out] CS1 > \verbatim > CS1 is DOUBLE PRECISION > \endverbatim > > \param[out] SN1 > \verbatim > SN1 is DOUBLE PRECISION > The vector (CS1, SN1) is a unit right eigenvector for RT1. > \endverbatim Authors: ======== > \author Univ. of Tennessee > \author Univ. of California Berkeley > \author Univ. of Colorado Denver > \author NAG Ltd. > \date September 2012 > \ingroup auxOTHERauxiliary > \par Further Details: ===================== > > \verbatim > > RT1 is accurate to a few ulps barring over/underflow. > > RT2 may be inaccurate if there is massive cancellation in the > determinant A*C-B*B; higher precision or correctly rounded or > correctly truncated arithmetic would be needed to compute RT2 > accurately in all cases. > > CS1 and SN1 are accurate to a few ulps barring over/underflow. > > Overflow is possible only if RT1 is within a factor of 5 of overflow. > Underflow is harmless if the input data is 0 or exceeds > underflow_threshold / macheps. > \endverbatim > ===================================================================== Subroutine */ int igraphdlaev2_(doublereal *a, doublereal *b, doublereal *c__, doublereal *rt1, doublereal *rt2, doublereal *cs1, doublereal *sn1) { /* System generated locals */ doublereal d__1; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ doublereal ab, df, cs, ct, tb, sm, tn, rt, adf, acs; integer sgn1, sgn2; doublereal acmn, acmx; /* -- LAPACK auxiliary routine (version 3.4.2) -- -- LAPACK is a software package provided by Univ. of Tennessee, -- -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- September 2012 ===================================================================== Compute the eigenvalues */ sm = *a + *c__; df = *a - *c__; adf = abs(df); tb = *b + *b; ab = abs(tb); if (abs(*a) > abs(*c__)) { acmx = *a; acmn = *c__; } else { acmx = *c__; acmn = *a; } if (adf > ab) { /* Computing 2nd power */ d__1 = ab / adf; rt = adf * sqrt(d__1 * d__1 + 1.); } else if (adf < ab) { /* Computing 2nd power */ d__1 = adf / ab; rt = ab * sqrt(d__1 * d__1 + 1.); } else { /* Includes case AB=ADF=0 */ rt = ab * sqrt(2.); } if (sm < 0.) { *rt1 = (sm - rt) * .5; sgn1 = -1; /* Order of execution important. To get fully accurate smaller eigenvalue, next line needs to be executed in higher precision. */ *rt2 = acmx / *rt1 * acmn - *b / *rt1 * *b; } else if (sm > 0.) { *rt1 = (sm + rt) * .5; sgn1 = 1; /* Order of execution important. To get fully accurate smaller eigenvalue, next line needs to be executed in higher precision. */ *rt2 = acmx / *rt1 * acmn - *b / *rt1 * *b; } else { /* Includes case RT1 = RT2 = 0 */ *rt1 = rt * .5; *rt2 = rt * -.5; sgn1 = 1; } /* Compute the eigenvector */ if (df >= 0.) { cs = df + rt; sgn2 = 1; } else { cs = df - rt; sgn2 = -1; } acs = abs(cs); if (acs > ab) { ct = -tb / cs; *sn1 = 1. / sqrt(ct * ct + 1.); *cs1 = ct * *sn1; } else { if (ab == 0.) { *cs1 = 1.; *sn1 = 0.; } else { tn = -cs / tb; *cs1 = 1. / sqrt(tn * tn + 1.); *sn1 = tn * *cs1; } } if (sgn1 == sgn2) { tn = *cs1; *cs1 = -(*sn1); *sn1 = tn; } return 0; /* End of DLAEV2 */ } /* igraphdlaev2_ */