/* -- translated by f2c (version 20191129).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
/* Table of constant values */
static integer c__1 = 1;
static integer c__4 = 4;
static logical c_false = FALSE_;
static integer c_n1 = -1;
static integer c__2 = 2;
static integer c__3 = 3;
/* > \brief \b DLAEXC swaps adjacent diagonal blocks of a real upper quasi-triangular matrix in Schur canonica
l form, by an orthogonal similarity transformation.
=========== DOCUMENTATION ===========
Online html documentation available at
http://www.netlib.org/lapack/explore-html/
> \htmlonly
> Download DLAEXC + dependencies
>
> [TGZ]
>
> [ZIP]
>
> [TXT]
> \endhtmlonly
Definition:
===========
SUBROUTINE DLAEXC( WANTQ, N, T, LDT, Q, LDQ, J1, N1, N2, WORK,
INFO )
LOGICAL WANTQ
INTEGER INFO, J1, LDQ, LDT, N, N1, N2
DOUBLE PRECISION Q( LDQ, * ), T( LDT, * ), WORK( * )
> \par Purpose:
=============
>
> \verbatim
>
> DLAEXC swaps adjacent diagonal blocks T11 and T22 of order 1 or 2 in
> an upper quasi-triangular matrix T by an orthogonal similarity
> transformation.
>
> T must be in Schur canonical form, that is, block upper triangular
> with 1-by-1 and 2-by-2 diagonal blocks; each 2-by-2 diagonal block
> has its diagonal elemnts equal and its off-diagonal elements of
> opposite sign.
> \endverbatim
Arguments:
==========
> \param[in] WANTQ
> \verbatim
> WANTQ is LOGICAL
> = .TRUE. : accumulate the transformation in the matrix Q;
> = .FALSE.: do not accumulate the transformation.
> \endverbatim
>
> \param[in] N
> \verbatim
> N is INTEGER
> The order of the matrix T. N >= 0.
> \endverbatim
>
> \param[in,out] T
> \verbatim
> T is DOUBLE PRECISION array, dimension (LDT,N)
> On entry, the upper quasi-triangular matrix T, in Schur
> canonical form.
> On exit, the updated matrix T, again in Schur canonical form.
> \endverbatim
>
> \param[in] LDT
> \verbatim
> LDT is INTEGER
> The leading dimension of the array T. LDT >= max(1,N).
> \endverbatim
>
> \param[in,out] Q
> \verbatim
> Q is DOUBLE PRECISION array, dimension (LDQ,N)
> On entry, if WANTQ is .TRUE., the orthogonal matrix Q.
> On exit, if WANTQ is .TRUE., the updated matrix Q.
> If WANTQ is .FALSE., Q is not referenced.
> \endverbatim
>
> \param[in] LDQ
> \verbatim
> LDQ is INTEGER
> The leading dimension of the array Q.
> LDQ >= 1; and if WANTQ is .TRUE., LDQ >= N.
> \endverbatim
>
> \param[in] J1
> \verbatim
> J1 is INTEGER
> The index of the first row of the first block T11.
> \endverbatim
>
> \param[in] N1
> \verbatim
> N1 is INTEGER
> The order of the first block T11. N1 = 0, 1 or 2.
> \endverbatim
>
> \param[in] N2
> \verbatim
> N2 is INTEGER
> The order of the second block T22. N2 = 0, 1 or 2.
> \endverbatim
>
> \param[out] WORK
> \verbatim
> WORK is DOUBLE PRECISION array, dimension (N)
> \endverbatim
>
> \param[out] INFO
> \verbatim
> INFO is INTEGER
> = 0: successful exit
> = 1: the transformed matrix T would be too far from Schur
> form; the blocks are not swapped and T and Q are
> unchanged.
> \endverbatim
Authors:
========
> \author Univ. of Tennessee
> \author Univ. of California Berkeley
> \author Univ. of Colorado Denver
> \author NAG Ltd.
> \date September 2012
> \ingroup doubleOTHERauxiliary
=====================================================================
Subroutine */ int igraphdlaexc_(logical *wantq, integer *n, doublereal *t,
integer *ldt, doublereal *q, integer *ldq, integer *j1, integer *n1,
integer *n2, doublereal *work, integer *info)
{
/* System generated locals */
integer q_dim1, q_offset, t_dim1, t_offset, i__1;
doublereal d__1, d__2, d__3;
/* Local variables */
doublereal d__[16] /* was [4][4] */;
integer k;
doublereal u[3], x[4] /* was [2][2] */;
integer j2, j3, j4;
doublereal u1[3], u2[3];
integer nd;
doublereal cs, t11, t22, t33, sn, wi1, wi2, wr1, wr2, eps, tau, tau1,
tau2;
integer ierr;
doublereal temp;
extern /* Subroutine */ int igraphdrot_(integer *, doublereal *, integer *,
doublereal *, integer *, doublereal *, doublereal *);
doublereal scale, dnorm, xnorm;
extern /* Subroutine */ int igraphdlanv2_(doublereal *, doublereal *,
doublereal *, doublereal *, doublereal *, doublereal *,
doublereal *, doublereal *, doublereal *, doublereal *), igraphdlasy2_(
logical *, logical *, integer *, integer *, integer *, doublereal
*, integer *, doublereal *, integer *, doublereal *, integer *,
doublereal *, doublereal *, integer *, doublereal *, integer *);
extern doublereal igraphdlamch_(char *), igraphdlange_(char *, integer *,
integer *, doublereal *, integer *, doublereal *);
extern /* Subroutine */ int igraphdlarfg_(integer *, doublereal *, doublereal *,
integer *, doublereal *), igraphdlacpy_(char *, integer *, integer *,
doublereal *, integer *, doublereal *, integer *),
igraphdlartg_(doublereal *, doublereal *, doublereal *, doublereal *,
doublereal *), igraphdlarfx_(char *, integer *, integer *, doublereal *,
doublereal *, doublereal *, integer *, doublereal *);
doublereal thresh, smlnum;
/* -- LAPACK auxiliary routine (version 3.4.2) --
-- LAPACK is a software package provided by Univ. of Tennessee, --
-- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
September 2012
=====================================================================
Parameter adjustments */
t_dim1 = *ldt;
t_offset = 1 + t_dim1;
t -= t_offset;
q_dim1 = *ldq;
q_offset = 1 + q_dim1;
q -= q_offset;
--work;
/* Function Body */
*info = 0;
/* Quick return if possible */
if (*n == 0 || *n1 == 0 || *n2 == 0) {
return 0;
}
if (*j1 + *n1 > *n) {
return 0;
}
j2 = *j1 + 1;
j3 = *j1 + 2;
j4 = *j1 + 3;
if (*n1 == 1 && *n2 == 1) {
/* Swap two 1-by-1 blocks. */
t11 = t[*j1 + *j1 * t_dim1];
t22 = t[j2 + j2 * t_dim1];
/* Determine the transformation to perform the interchange. */
d__1 = t22 - t11;
igraphdlartg_(&t[*j1 + j2 * t_dim1], &d__1, &cs, &sn, &temp);
/* Apply transformation to the matrix T. */
if (j3 <= *n) {
i__1 = *n - *j1 - 1;
igraphdrot_(&i__1, &t[*j1 + j3 * t_dim1], ldt, &t[j2 + j3 * t_dim1],
ldt, &cs, &sn);
}
i__1 = *j1 - 1;
igraphdrot_(&i__1, &t[*j1 * t_dim1 + 1], &c__1, &t[j2 * t_dim1 + 1], &c__1,
&cs, &sn);
t[*j1 + *j1 * t_dim1] = t22;
t[j2 + j2 * t_dim1] = t11;
if (*wantq) {
/* Accumulate transformation in the matrix Q. */
igraphdrot_(n, &q[*j1 * q_dim1 + 1], &c__1, &q[j2 * q_dim1 + 1], &c__1,
&cs, &sn);
}
} else {
/* Swapping involves at least one 2-by-2 block.
Copy the diagonal block of order N1+N2 to the local array D
and compute its norm. */
nd = *n1 + *n2;
igraphdlacpy_("Full", &nd, &nd, &t[*j1 + *j1 * t_dim1], ldt, d__, &c__4);
dnorm = igraphdlange_("Max", &nd, &nd, d__, &c__4, &work[1]);
/* Compute machine-dependent threshold for test for accepting
swap. */
eps = igraphdlamch_("P");
smlnum = igraphdlamch_("S") / eps;
/* Computing MAX */
d__1 = eps * 10. * dnorm;
thresh = max(d__1,smlnum);
/* Solve T11*X - X*T22 = scale*T12 for X. */
igraphdlasy2_(&c_false, &c_false, &c_n1, n1, n2, d__, &c__4, &d__[*n1 + 1 +
(*n1 + 1 << 2) - 5], &c__4, &d__[(*n1 + 1 << 2) - 4], &c__4, &
scale, x, &c__2, &xnorm, &ierr);
/* Swap the adjacent diagonal blocks. */
k = *n1 + *n1 + *n2 - 3;
switch (k) {
case 1: goto L10;
case 2: goto L20;
case 3: goto L30;
}
L10:
/* N1 = 1, N2 = 2: generate elementary reflector H so that:
( scale, X11, X12 ) H = ( 0, 0, * ) */
u[0] = scale;
u[1] = x[0];
u[2] = x[2];
igraphdlarfg_(&c__3, &u[2], u, &c__1, &tau);
u[2] = 1.;
t11 = t[*j1 + *j1 * t_dim1];
/* Perform swap provisionally on diagonal block in D. */
igraphdlarfx_("L", &c__3, &c__3, u, &tau, d__, &c__4, &work[1]);
igraphdlarfx_("R", &c__3, &c__3, u, &tau, d__, &c__4, &work[1]);
/* Test whether to reject swap.
Computing MAX */
d__2 = abs(d__[2]), d__3 = abs(d__[6]), d__2 = max(d__2,d__3), d__3 =
(d__1 = d__[10] - t11, abs(d__1));
if (max(d__2,d__3) > thresh) {
goto L50;
}
/* Accept swap: apply transformation to the entire matrix T. */
i__1 = *n - *j1 + 1;
igraphdlarfx_("L", &c__3, &i__1, u, &tau, &t[*j1 + *j1 * t_dim1], ldt, &
work[1]);
igraphdlarfx_("R", &j2, &c__3, u, &tau, &t[*j1 * t_dim1 + 1], ldt, &work[1]);
t[j3 + *j1 * t_dim1] = 0.;
t[j3 + j2 * t_dim1] = 0.;
t[j3 + j3 * t_dim1] = t11;
if (*wantq) {
/* Accumulate transformation in the matrix Q. */
igraphdlarfx_("R", n, &c__3, u, &tau, &q[*j1 * q_dim1 + 1], ldq, &work[
1]);
}
goto L40;
L20:
/* N1 = 2, N2 = 1: generate elementary reflector H so that:
H ( -X11 ) = ( * )
( -X21 ) = ( 0 )
( scale ) = ( 0 ) */
u[0] = -x[0];
u[1] = -x[1];
u[2] = scale;
igraphdlarfg_(&c__3, u, &u[1], &c__1, &tau);
u[0] = 1.;
t33 = t[j3 + j3 * t_dim1];
/* Perform swap provisionally on diagonal block in D. */
igraphdlarfx_("L", &c__3, &c__3, u, &tau, d__, &c__4, &work[1]);
igraphdlarfx_("R", &c__3, &c__3, u, &tau, d__, &c__4, &work[1]);
/* Test whether to reject swap.
Computing MAX */
d__2 = abs(d__[1]), d__3 = abs(d__[2]), d__2 = max(d__2,d__3), d__3 =
(d__1 = d__[0] - t33, abs(d__1));
if (max(d__2,d__3) > thresh) {
goto L50;
}
/* Accept swap: apply transformation to the entire matrix T. */
igraphdlarfx_("R", &j3, &c__3, u, &tau, &t[*j1 * t_dim1 + 1], ldt, &work[1]);
i__1 = *n - *j1;
igraphdlarfx_("L", &c__3, &i__1, u, &tau, &t[*j1 + j2 * t_dim1], ldt, &work[
1]);
t[*j1 + *j1 * t_dim1] = t33;
t[j2 + *j1 * t_dim1] = 0.;
t[j3 + *j1 * t_dim1] = 0.;
if (*wantq) {
/* Accumulate transformation in the matrix Q. */
igraphdlarfx_("R", n, &c__3, u, &tau, &q[*j1 * q_dim1 + 1], ldq, &work[
1]);
}
goto L40;
L30:
/* N1 = 2, N2 = 2: generate elementary reflectors H(1) and H(2) so
that:
H(2) H(1) ( -X11 -X12 ) = ( * * )
( -X21 -X22 ) ( 0 * )
( scale 0 ) ( 0 0 )
( 0 scale ) ( 0 0 ) */
u1[0] = -x[0];
u1[1] = -x[1];
u1[2] = scale;
igraphdlarfg_(&c__3, u1, &u1[1], &c__1, &tau1);
u1[0] = 1.;
temp = -tau1 * (x[2] + u1[1] * x[3]);
u2[0] = -temp * u1[1] - x[3];
u2[1] = -temp * u1[2];
u2[2] = scale;
igraphdlarfg_(&c__3, u2, &u2[1], &c__1, &tau2);
u2[0] = 1.;
/* Perform swap provisionally on diagonal block in D. */
igraphdlarfx_("L", &c__3, &c__4, u1, &tau1, d__, &c__4, &work[1])
;
igraphdlarfx_("R", &c__4, &c__3, u1, &tau1, d__, &c__4, &work[1])
;
igraphdlarfx_("L", &c__3, &c__4, u2, &tau2, &d__[1], &c__4, &work[1]);
igraphdlarfx_("R", &c__4, &c__3, u2, &tau2, &d__[4], &c__4, &work[1]);
/* Test whether to reject swap.
Computing MAX */
d__1 = abs(d__[2]), d__2 = abs(d__[6]), d__1 = max(d__1,d__2), d__2 =
abs(d__[3]), d__1 = max(d__1,d__2), d__2 = abs(d__[7]);
if (max(d__1,d__2) > thresh) {
goto L50;
}
/* Accept swap: apply transformation to the entire matrix T. */
i__1 = *n - *j1 + 1;
igraphdlarfx_("L", &c__3, &i__1, u1, &tau1, &t[*j1 + *j1 * t_dim1], ldt, &
work[1]);
igraphdlarfx_("R", &j4, &c__3, u1, &tau1, &t[*j1 * t_dim1 + 1], ldt, &work[
1]);
i__1 = *n - *j1 + 1;
igraphdlarfx_("L", &c__3, &i__1, u2, &tau2, &t[j2 + *j1 * t_dim1], ldt, &
work[1]);
igraphdlarfx_("R", &j4, &c__3, u2, &tau2, &t[j2 * t_dim1 + 1], ldt, &work[1]
);
t[j3 + *j1 * t_dim1] = 0.;
t[j3 + j2 * t_dim1] = 0.;
t[j4 + *j1 * t_dim1] = 0.;
t[j4 + j2 * t_dim1] = 0.;
if (*wantq) {
/* Accumulate transformation in the matrix Q. */
igraphdlarfx_("R", n, &c__3, u1, &tau1, &q[*j1 * q_dim1 + 1], ldq, &
work[1]);
igraphdlarfx_("R", n, &c__3, u2, &tau2, &q[j2 * q_dim1 + 1], ldq, &work[
1]);
}
L40:
if (*n2 == 2) {
/* Standardize new 2-by-2 block T11 */
igraphdlanv2_(&t[*j1 + *j1 * t_dim1], &t[*j1 + j2 * t_dim1], &t[j2 + *
j1 * t_dim1], &t[j2 + j2 * t_dim1], &wr1, &wi1, &wr2, &
wi2, &cs, &sn);
i__1 = *n - *j1 - 1;
igraphdrot_(&i__1, &t[*j1 + (*j1 + 2) * t_dim1], ldt, &t[j2 + (*j1 + 2)
* t_dim1], ldt, &cs, &sn);
i__1 = *j1 - 1;
igraphdrot_(&i__1, &t[*j1 * t_dim1 + 1], &c__1, &t[j2 * t_dim1 + 1], &
c__1, &cs, &sn);
if (*wantq) {
igraphdrot_(n, &q[*j1 * q_dim1 + 1], &c__1, &q[j2 * q_dim1 + 1], &
c__1, &cs, &sn);
}
}
if (*n1 == 2) {
/* Standardize new 2-by-2 block T22 */
j3 = *j1 + *n2;
j4 = j3 + 1;
igraphdlanv2_(&t[j3 + j3 * t_dim1], &t[j3 + j4 * t_dim1], &t[j4 + j3 *
t_dim1], &t[j4 + j4 * t_dim1], &wr1, &wi1, &wr2, &wi2, &
cs, &sn);
if (j3 + 2 <= *n) {
i__1 = *n - j3 - 1;
igraphdrot_(&i__1, &t[j3 + (j3 + 2) * t_dim1], ldt, &t[j4 + (j3 + 2)
* t_dim1], ldt, &cs, &sn);
}
i__1 = j3 - 1;
igraphdrot_(&i__1, &t[j3 * t_dim1 + 1], &c__1, &t[j4 * t_dim1 + 1], &
c__1, &cs, &sn);
if (*wantq) {
igraphdrot_(n, &q[j3 * q_dim1 + 1], &c__1, &q[j4 * q_dim1 + 1], &
c__1, &cs, &sn);
}
}
}
return 0;
/* Exit with INFO = 1 if swap was rejected. */
L50:
*info = 1;
return 0;
/* End of DLAEXC */
} /* igraphdlaexc_ */