/* -- translated by f2c (version 20191129). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Table of constant values */ static integer c__1 = 1; static integer c__4 = 4; static logical c_false = FALSE_; static integer c_n1 = -1; static integer c__2 = 2; static integer c__3 = 3; /* > \brief \b DLAEXC swaps adjacent diagonal blocks of a real upper quasi-triangular matrix in Schur canonica l form, by an orthogonal similarity transformation. =========== DOCUMENTATION =========== Online html documentation available at http://www.netlib.org/lapack/explore-html/ > \htmlonly > Download DLAEXC + dependencies > > [TGZ] > > [ZIP] > > [TXT] > \endhtmlonly Definition: =========== SUBROUTINE DLAEXC( WANTQ, N, T, LDT, Q, LDQ, J1, N1, N2, WORK, INFO ) LOGICAL WANTQ INTEGER INFO, J1, LDQ, LDT, N, N1, N2 DOUBLE PRECISION Q( LDQ, * ), T( LDT, * ), WORK( * ) > \par Purpose: ============= > > \verbatim > > DLAEXC swaps adjacent diagonal blocks T11 and T22 of order 1 or 2 in > an upper quasi-triangular matrix T by an orthogonal similarity > transformation. > > T must be in Schur canonical form, that is, block upper triangular > with 1-by-1 and 2-by-2 diagonal blocks; each 2-by-2 diagonal block > has its diagonal elemnts equal and its off-diagonal elements of > opposite sign. > \endverbatim Arguments: ========== > \param[in] WANTQ > \verbatim > WANTQ is LOGICAL > = .TRUE. : accumulate the transformation in the matrix Q; > = .FALSE.: do not accumulate the transformation. > \endverbatim > > \param[in] N > \verbatim > N is INTEGER > The order of the matrix T. N >= 0. > \endverbatim > > \param[in,out] T > \verbatim > T is DOUBLE PRECISION array, dimension (LDT,N) > On entry, the upper quasi-triangular matrix T, in Schur > canonical form. > On exit, the updated matrix T, again in Schur canonical form. > \endverbatim > > \param[in] LDT > \verbatim > LDT is INTEGER > The leading dimension of the array T. LDT >= max(1,N). > \endverbatim > > \param[in,out] Q > \verbatim > Q is DOUBLE PRECISION array, dimension (LDQ,N) > On entry, if WANTQ is .TRUE., the orthogonal matrix Q. > On exit, if WANTQ is .TRUE., the updated matrix Q. > If WANTQ is .FALSE., Q is not referenced. > \endverbatim > > \param[in] LDQ > \verbatim > LDQ is INTEGER > The leading dimension of the array Q. > LDQ >= 1; and if WANTQ is .TRUE., LDQ >= N. > \endverbatim > > \param[in] J1 > \verbatim > J1 is INTEGER > The index of the first row of the first block T11. > \endverbatim > > \param[in] N1 > \verbatim > N1 is INTEGER > The order of the first block T11. N1 = 0, 1 or 2. > \endverbatim > > \param[in] N2 > \verbatim > N2 is INTEGER > The order of the second block T22. N2 = 0, 1 or 2. > \endverbatim > > \param[out] WORK > \verbatim > WORK is DOUBLE PRECISION array, dimension (N) > \endverbatim > > \param[out] INFO > \verbatim > INFO is INTEGER > = 0: successful exit > = 1: the transformed matrix T would be too far from Schur > form; the blocks are not swapped and T and Q are > unchanged. > \endverbatim Authors: ======== > \author Univ. of Tennessee > \author Univ. of California Berkeley > \author Univ. of Colorado Denver > \author NAG Ltd. > \date September 2012 > \ingroup doubleOTHERauxiliary ===================================================================== Subroutine */ int igraphdlaexc_(logical *wantq, integer *n, doublereal *t, integer *ldt, doublereal *q, integer *ldq, integer *j1, integer *n1, integer *n2, doublereal *work, integer *info) { /* System generated locals */ integer q_dim1, q_offset, t_dim1, t_offset, i__1; doublereal d__1, d__2, d__3; /* Local variables */ doublereal d__[16] /* was [4][4] */; integer k; doublereal u[3], x[4] /* was [2][2] */; integer j2, j3, j4; doublereal u1[3], u2[3]; integer nd; doublereal cs, t11, t22, t33, sn, wi1, wi2, wr1, wr2, eps, tau, tau1, tau2; integer ierr; doublereal temp; extern /* Subroutine */ int igraphdrot_(integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *); doublereal scale, dnorm, xnorm; extern /* Subroutine */ int igraphdlanv2_(doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *), igraphdlasy2_( logical *, logical *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *); extern doublereal igraphdlamch_(char *), igraphdlange_(char *, integer *, integer *, doublereal *, integer *, doublereal *); extern /* Subroutine */ int igraphdlarfg_(integer *, doublereal *, doublereal *, integer *, doublereal *), igraphdlacpy_(char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *), igraphdlartg_(doublereal *, doublereal *, doublereal *, doublereal *, doublereal *), igraphdlarfx_(char *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *, doublereal *); doublereal thresh, smlnum; /* -- LAPACK auxiliary routine (version 3.4.2) -- -- LAPACK is a software package provided by Univ. of Tennessee, -- -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- September 2012 ===================================================================== Parameter adjustments */ t_dim1 = *ldt; t_offset = 1 + t_dim1; t -= t_offset; q_dim1 = *ldq; q_offset = 1 + q_dim1; q -= q_offset; --work; /* Function Body */ *info = 0; /* Quick return if possible */ if (*n == 0 || *n1 == 0 || *n2 == 0) { return 0; } if (*j1 + *n1 > *n) { return 0; } j2 = *j1 + 1; j3 = *j1 + 2; j4 = *j1 + 3; if (*n1 == 1 && *n2 == 1) { /* Swap two 1-by-1 blocks. */ t11 = t[*j1 + *j1 * t_dim1]; t22 = t[j2 + j2 * t_dim1]; /* Determine the transformation to perform the interchange. */ d__1 = t22 - t11; igraphdlartg_(&t[*j1 + j2 * t_dim1], &d__1, &cs, &sn, &temp); /* Apply transformation to the matrix T. */ if (j3 <= *n) { i__1 = *n - *j1 - 1; igraphdrot_(&i__1, &t[*j1 + j3 * t_dim1], ldt, &t[j2 + j3 * t_dim1], ldt, &cs, &sn); } i__1 = *j1 - 1; igraphdrot_(&i__1, &t[*j1 * t_dim1 + 1], &c__1, &t[j2 * t_dim1 + 1], &c__1, &cs, &sn); t[*j1 + *j1 * t_dim1] = t22; t[j2 + j2 * t_dim1] = t11; if (*wantq) { /* Accumulate transformation in the matrix Q. */ igraphdrot_(n, &q[*j1 * q_dim1 + 1], &c__1, &q[j2 * q_dim1 + 1], &c__1, &cs, &sn); } } else { /* Swapping involves at least one 2-by-2 block. Copy the diagonal block of order N1+N2 to the local array D and compute its norm. */ nd = *n1 + *n2; igraphdlacpy_("Full", &nd, &nd, &t[*j1 + *j1 * t_dim1], ldt, d__, &c__4); dnorm = igraphdlange_("Max", &nd, &nd, d__, &c__4, &work[1]); /* Compute machine-dependent threshold for test for accepting swap. */ eps = igraphdlamch_("P"); smlnum = igraphdlamch_("S") / eps; /* Computing MAX */ d__1 = eps * 10. * dnorm; thresh = max(d__1,smlnum); /* Solve T11*X - X*T22 = scale*T12 for X. */ igraphdlasy2_(&c_false, &c_false, &c_n1, n1, n2, d__, &c__4, &d__[*n1 + 1 + (*n1 + 1 << 2) - 5], &c__4, &d__[(*n1 + 1 << 2) - 4], &c__4, & scale, x, &c__2, &xnorm, &ierr); /* Swap the adjacent diagonal blocks. */ k = *n1 + *n1 + *n2 - 3; switch (k) { case 1: goto L10; case 2: goto L20; case 3: goto L30; } L10: /* N1 = 1, N2 = 2: generate elementary reflector H so that: ( scale, X11, X12 ) H = ( 0, 0, * ) */ u[0] = scale; u[1] = x[0]; u[2] = x[2]; igraphdlarfg_(&c__3, &u[2], u, &c__1, &tau); u[2] = 1.; t11 = t[*j1 + *j1 * t_dim1]; /* Perform swap provisionally on diagonal block in D. */ igraphdlarfx_("L", &c__3, &c__3, u, &tau, d__, &c__4, &work[1]); igraphdlarfx_("R", &c__3, &c__3, u, &tau, d__, &c__4, &work[1]); /* Test whether to reject swap. Computing MAX */ d__2 = abs(d__[2]), d__3 = abs(d__[6]), d__2 = max(d__2,d__3), d__3 = (d__1 = d__[10] - t11, abs(d__1)); if (max(d__2,d__3) > thresh) { goto L50; } /* Accept swap: apply transformation to the entire matrix T. */ i__1 = *n - *j1 + 1; igraphdlarfx_("L", &c__3, &i__1, u, &tau, &t[*j1 + *j1 * t_dim1], ldt, & work[1]); igraphdlarfx_("R", &j2, &c__3, u, &tau, &t[*j1 * t_dim1 + 1], ldt, &work[1]); t[j3 + *j1 * t_dim1] = 0.; t[j3 + j2 * t_dim1] = 0.; t[j3 + j3 * t_dim1] = t11; if (*wantq) { /* Accumulate transformation in the matrix Q. */ igraphdlarfx_("R", n, &c__3, u, &tau, &q[*j1 * q_dim1 + 1], ldq, &work[ 1]); } goto L40; L20: /* N1 = 2, N2 = 1: generate elementary reflector H so that: H ( -X11 ) = ( * ) ( -X21 ) = ( 0 ) ( scale ) = ( 0 ) */ u[0] = -x[0]; u[1] = -x[1]; u[2] = scale; igraphdlarfg_(&c__3, u, &u[1], &c__1, &tau); u[0] = 1.; t33 = t[j3 + j3 * t_dim1]; /* Perform swap provisionally on diagonal block in D. */ igraphdlarfx_("L", &c__3, &c__3, u, &tau, d__, &c__4, &work[1]); igraphdlarfx_("R", &c__3, &c__3, u, &tau, d__, &c__4, &work[1]); /* Test whether to reject swap. Computing MAX */ d__2 = abs(d__[1]), d__3 = abs(d__[2]), d__2 = max(d__2,d__3), d__3 = (d__1 = d__[0] - t33, abs(d__1)); if (max(d__2,d__3) > thresh) { goto L50; } /* Accept swap: apply transformation to the entire matrix T. */ igraphdlarfx_("R", &j3, &c__3, u, &tau, &t[*j1 * t_dim1 + 1], ldt, &work[1]); i__1 = *n - *j1; igraphdlarfx_("L", &c__3, &i__1, u, &tau, &t[*j1 + j2 * t_dim1], ldt, &work[ 1]); t[*j1 + *j1 * t_dim1] = t33; t[j2 + *j1 * t_dim1] = 0.; t[j3 + *j1 * t_dim1] = 0.; if (*wantq) { /* Accumulate transformation in the matrix Q. */ igraphdlarfx_("R", n, &c__3, u, &tau, &q[*j1 * q_dim1 + 1], ldq, &work[ 1]); } goto L40; L30: /* N1 = 2, N2 = 2: generate elementary reflectors H(1) and H(2) so that: H(2) H(1) ( -X11 -X12 ) = ( * * ) ( -X21 -X22 ) ( 0 * ) ( scale 0 ) ( 0 0 ) ( 0 scale ) ( 0 0 ) */ u1[0] = -x[0]; u1[1] = -x[1]; u1[2] = scale; igraphdlarfg_(&c__3, u1, &u1[1], &c__1, &tau1); u1[0] = 1.; temp = -tau1 * (x[2] + u1[1] * x[3]); u2[0] = -temp * u1[1] - x[3]; u2[1] = -temp * u1[2]; u2[2] = scale; igraphdlarfg_(&c__3, u2, &u2[1], &c__1, &tau2); u2[0] = 1.; /* Perform swap provisionally on diagonal block in D. */ igraphdlarfx_("L", &c__3, &c__4, u1, &tau1, d__, &c__4, &work[1]) ; igraphdlarfx_("R", &c__4, &c__3, u1, &tau1, d__, &c__4, &work[1]) ; igraphdlarfx_("L", &c__3, &c__4, u2, &tau2, &d__[1], &c__4, &work[1]); igraphdlarfx_("R", &c__4, &c__3, u2, &tau2, &d__[4], &c__4, &work[1]); /* Test whether to reject swap. Computing MAX */ d__1 = abs(d__[2]), d__2 = abs(d__[6]), d__1 = max(d__1,d__2), d__2 = abs(d__[3]), d__1 = max(d__1,d__2), d__2 = abs(d__[7]); if (max(d__1,d__2) > thresh) { goto L50; } /* Accept swap: apply transformation to the entire matrix T. */ i__1 = *n - *j1 + 1; igraphdlarfx_("L", &c__3, &i__1, u1, &tau1, &t[*j1 + *j1 * t_dim1], ldt, & work[1]); igraphdlarfx_("R", &j4, &c__3, u1, &tau1, &t[*j1 * t_dim1 + 1], ldt, &work[ 1]); i__1 = *n - *j1 + 1; igraphdlarfx_("L", &c__3, &i__1, u2, &tau2, &t[j2 + *j1 * t_dim1], ldt, & work[1]); igraphdlarfx_("R", &j4, &c__3, u2, &tau2, &t[j2 * t_dim1 + 1], ldt, &work[1] ); t[j3 + *j1 * t_dim1] = 0.; t[j3 + j2 * t_dim1] = 0.; t[j4 + *j1 * t_dim1] = 0.; t[j4 + j2 * t_dim1] = 0.; if (*wantq) { /* Accumulate transformation in the matrix Q. */ igraphdlarfx_("R", n, &c__3, u1, &tau1, &q[*j1 * q_dim1 + 1], ldq, & work[1]); igraphdlarfx_("R", n, &c__3, u2, &tau2, &q[j2 * q_dim1 + 1], ldq, &work[ 1]); } L40: if (*n2 == 2) { /* Standardize new 2-by-2 block T11 */ igraphdlanv2_(&t[*j1 + *j1 * t_dim1], &t[*j1 + j2 * t_dim1], &t[j2 + * j1 * t_dim1], &t[j2 + j2 * t_dim1], &wr1, &wi1, &wr2, & wi2, &cs, &sn); i__1 = *n - *j1 - 1; igraphdrot_(&i__1, &t[*j1 + (*j1 + 2) * t_dim1], ldt, &t[j2 + (*j1 + 2) * t_dim1], ldt, &cs, &sn); i__1 = *j1 - 1; igraphdrot_(&i__1, &t[*j1 * t_dim1 + 1], &c__1, &t[j2 * t_dim1 + 1], & c__1, &cs, &sn); if (*wantq) { igraphdrot_(n, &q[*j1 * q_dim1 + 1], &c__1, &q[j2 * q_dim1 + 1], & c__1, &cs, &sn); } } if (*n1 == 2) { /* Standardize new 2-by-2 block T22 */ j3 = *j1 + *n2; j4 = j3 + 1; igraphdlanv2_(&t[j3 + j3 * t_dim1], &t[j3 + j4 * t_dim1], &t[j4 + j3 * t_dim1], &t[j4 + j4 * t_dim1], &wr1, &wi1, &wr2, &wi2, & cs, &sn); if (j3 + 2 <= *n) { i__1 = *n - j3 - 1; igraphdrot_(&i__1, &t[j3 + (j3 + 2) * t_dim1], ldt, &t[j4 + (j3 + 2) * t_dim1], ldt, &cs, &sn); } i__1 = j3 - 1; igraphdrot_(&i__1, &t[j3 * t_dim1 + 1], &c__1, &t[j4 * t_dim1 + 1], & c__1, &cs, &sn); if (*wantq) { igraphdrot_(n, &q[j3 * q_dim1 + 1], &c__1, &q[j4 * q_dim1 + 1], & c__1, &cs, &sn); } } } return 0; /* Exit with INFO = 1 if swap was rejected. */ L50: *info = 1; return 0; /* End of DLAEXC */ } /* igraphdlaexc_ */