/* -- translated by f2c (version 20191129). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* > \brief \b DLAGTS solves the system of equations (T-λI)x = y or (T-λI)Tx = y,where T is a general tridia gonal matrix and λ a scalar, using the LU factorization computed by slagtf. =========== DOCUMENTATION =========== Online html documentation available at http://www.netlib.org/lapack/explore-html/ > \htmlonly > Download DLAGTS + dependencies > > [TGZ] > > [ZIP] > > [TXT] > \endhtmlonly Definition: =========== SUBROUTINE DLAGTS( JOB, N, A, B, C, D, IN, Y, TOL, INFO ) INTEGER INFO, JOB, N DOUBLE PRECISION TOL INTEGER IN( * ) DOUBLE PRECISION A( * ), B( * ), C( * ), D( * ), Y( * ) > \par Purpose: ============= > > \verbatim > > DLAGTS may be used to solve one of the systems of equations > > (T - lambda*I)*x = y or (T - lambda*I)**T*x = y, > > where T is an n by n tridiagonal matrix, for x, following the > factorization of (T - lambda*I) as > > (T - lambda*I) = P*L*U , > > by routine DLAGTF. The choice of equation to be solved is > controlled by the argument JOB, and in each case there is an option > to perturb zero or very small diagonal elements of U, this option > being intended for use in applications such as inverse iteration. > \endverbatim Arguments: ========== > \param[in] JOB > \verbatim > JOB is INTEGER > Specifies the job to be performed by DLAGTS as follows: > = 1: The equations (T - lambda*I)x = y are to be solved, > but diagonal elements of U are not to be perturbed. > = -1: The equations (T - lambda*I)x = y are to be solved > and, if overflow would otherwise occur, the diagonal > elements of U are to be perturbed. See argument TOL > below. > = 2: The equations (T - lambda*I)**Tx = y are to be solved, > but diagonal elements of U are not to be perturbed. > = -2: The equations (T - lambda*I)**Tx = y are to be solved > and, if overflow would otherwise occur, the diagonal > elements of U are to be perturbed. See argument TOL > below. > \endverbatim > > \param[in] N > \verbatim > N is INTEGER > The order of the matrix T. > \endverbatim > > \param[in] A > \verbatim > A is DOUBLE PRECISION array, dimension (N) > On entry, A must contain the diagonal elements of U as > returned from DLAGTF. > \endverbatim > > \param[in] B > \verbatim > B is DOUBLE PRECISION array, dimension (N-1) > On entry, B must contain the first super-diagonal elements of > U as returned from DLAGTF. > \endverbatim > > \param[in] C > \verbatim > C is DOUBLE PRECISION array, dimension (N-1) > On entry, C must contain the sub-diagonal elements of L as > returned from DLAGTF. > \endverbatim > > \param[in] D > \verbatim > D is DOUBLE PRECISION array, dimension (N-2) > On entry, D must contain the second super-diagonal elements > of U as returned from DLAGTF. > \endverbatim > > \param[in] IN > \verbatim > IN is INTEGER array, dimension (N) > On entry, IN must contain details of the matrix P as returned > from DLAGTF. > \endverbatim > > \param[in,out] Y > \verbatim > Y is DOUBLE PRECISION array, dimension (N) > On entry, the right hand side vector y. > On exit, Y is overwritten by the solution vector x. > \endverbatim > > \param[in,out] TOL > \verbatim > TOL is DOUBLE PRECISION > On entry, with JOB .lt. 0, TOL should be the minimum > perturbation to be made to very small diagonal elements of U. > TOL should normally be chosen as about eps*norm(U), where eps > is the relative machine precision, but if TOL is supplied as > non-positive, then it is reset to eps*max( abs( u(i,j) ) ). > If JOB .gt. 0 then TOL is not referenced. > > On exit, TOL is changed as described above, only if TOL is > non-positive on entry. Otherwise TOL is unchanged. > \endverbatim > > \param[out] INFO > \verbatim > INFO is INTEGER > = 0 : successful exit > .lt. 0: if INFO = -i, the i-th argument had an illegal value > .gt. 0: overflow would occur when computing the INFO(th) > element of the solution vector x. This can only occur > when JOB is supplied as positive and either means > that a diagonal element of U is very small, or that > the elements of the right-hand side vector y are very > large. > \endverbatim Authors: ======== > \author Univ. of Tennessee > \author Univ. of California Berkeley > \author Univ. of Colorado Denver > \author NAG Ltd. > \date September 2012 > \ingroup auxOTHERauxiliary ===================================================================== Subroutine */ int igraphdlagts_(integer *job, integer *n, doublereal *a, doublereal *b, doublereal *c__, doublereal *d__, integer *in, doublereal *y, doublereal *tol, integer *info) { /* System generated locals */ integer i__1; doublereal d__1, d__2, d__3, d__4, d__5; /* Builtin functions */ double d_sign(doublereal *, doublereal *); /* Local variables */ integer k; doublereal ak, eps, temp, pert, absak, sfmin; extern doublereal igraphdlamch_(char *); extern /* Subroutine */ int igraphxerbla_(char *, integer *, ftnlen); doublereal bignum; /* -- LAPACK auxiliary routine (version 3.4.2) -- -- LAPACK is a software package provided by Univ. of Tennessee, -- -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- September 2012 ===================================================================== Parameter adjustments */ --y; --in; --d__; --c__; --b; --a; /* Function Body */ *info = 0; if (abs(*job) > 2 || *job == 0) { *info = -1; } else if (*n < 0) { *info = -2; } if (*info != 0) { i__1 = -(*info); igraphxerbla_("DLAGTS", &i__1, (ftnlen)6); return 0; } if (*n == 0) { return 0; } eps = igraphdlamch_("Epsilon"); sfmin = igraphdlamch_("Safe minimum"); bignum = 1. / sfmin; if (*job < 0) { if (*tol <= 0.) { *tol = abs(a[1]); if (*n > 1) { /* Computing MAX */ d__1 = *tol, d__2 = abs(a[2]), d__1 = max(d__1,d__2), d__2 = abs(b[1]); *tol = max(d__1,d__2); } i__1 = *n; for (k = 3; k <= i__1; ++k) { /* Computing MAX */ d__4 = *tol, d__5 = (d__1 = a[k], abs(d__1)), d__4 = max(d__4, d__5), d__5 = (d__2 = b[k - 1], abs(d__2)), d__4 = max(d__4,d__5), d__5 = (d__3 = d__[k - 2], abs(d__3)); *tol = max(d__4,d__5); /* L10: */ } *tol *= eps; if (*tol == 0.) { *tol = eps; } } } if (abs(*job) == 1) { i__1 = *n; for (k = 2; k <= i__1; ++k) { if (in[k - 1] == 0) { y[k] -= c__[k - 1] * y[k - 1]; } else { temp = y[k - 1]; y[k - 1] = y[k]; y[k] = temp - c__[k - 1] * y[k]; } /* L20: */ } if (*job == 1) { for (k = *n; k >= 1; --k) { if (k <= *n - 2) { temp = y[k] - b[k] * y[k + 1] - d__[k] * y[k + 2]; } else if (k == *n - 1) { temp = y[k] - b[k] * y[k + 1]; } else { temp = y[k]; } ak = a[k]; absak = abs(ak); if (absak < 1.) { if (absak < sfmin) { if (absak == 0. || abs(temp) * sfmin > absak) { *info = k; return 0; } else { temp *= bignum; ak *= bignum; } } else if (abs(temp) > absak * bignum) { *info = k; return 0; } } y[k] = temp / ak; /* L30: */ } } else { for (k = *n; k >= 1; --k) { if (k <= *n - 2) { temp = y[k] - b[k] * y[k + 1] - d__[k] * y[k + 2]; } else if (k == *n - 1) { temp = y[k] - b[k] * y[k + 1]; } else { temp = y[k]; } ak = a[k]; pert = d_sign(tol, &ak); L40: absak = abs(ak); if (absak < 1.) { if (absak < sfmin) { if (absak == 0. || abs(temp) * sfmin > absak) { ak += pert; pert *= 2; goto L40; } else { temp *= bignum; ak *= bignum; } } else if (abs(temp) > absak * bignum) { ak += pert; pert *= 2; goto L40; } } y[k] = temp / ak; /* L50: */ } } } else { /* Come to here if JOB = 2 or -2 */ if (*job == 2) { i__1 = *n; for (k = 1; k <= i__1; ++k) { if (k >= 3) { temp = y[k] - b[k - 1] * y[k - 1] - d__[k - 2] * y[k - 2]; } else if (k == 2) { temp = y[k] - b[k - 1] * y[k - 1]; } else { temp = y[k]; } ak = a[k]; absak = abs(ak); if (absak < 1.) { if (absak < sfmin) { if (absak == 0. || abs(temp) * sfmin > absak) { *info = k; return 0; } else { temp *= bignum; ak *= bignum; } } else if (abs(temp) > absak * bignum) { *info = k; return 0; } } y[k] = temp / ak; /* L60: */ } } else { i__1 = *n; for (k = 1; k <= i__1; ++k) { if (k >= 3) { temp = y[k] - b[k - 1] * y[k - 1] - d__[k - 2] * y[k - 2]; } else if (k == 2) { temp = y[k] - b[k - 1] * y[k - 1]; } else { temp = y[k]; } ak = a[k]; pert = d_sign(tol, &ak); L70: absak = abs(ak); if (absak < 1.) { if (absak < sfmin) { if (absak == 0. || abs(temp) * sfmin > absak) { ak += pert; pert *= 2; goto L70; } else { temp *= bignum; ak *= bignum; } } else if (abs(temp) > absak * bignum) { ak += pert; pert *= 2; goto L70; } } y[k] = temp / ak; /* L80: */ } } for (k = *n; k >= 2; --k) { if (in[k - 1] == 0) { y[k - 1] -= c__[k - 1] * y[k]; } else { temp = y[k - 1]; y[k - 1] = y[k]; y[k] = temp - c__[k - 1] * y[k]; } /* L90: */ } } /* End of DLAGTS */ return 0; } /* igraphdlagts_ */