/* -- translated by f2c (version 20191129). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* > \brief \b DLALN2 solves a 1-by-1 or 2-by-2 linear system of equations of the specified form. =========== DOCUMENTATION =========== Online html documentation available at http://www.netlib.org/lapack/explore-html/ > \htmlonly > Download DLALN2 + dependencies > > [TGZ] > > [ZIP] > > [TXT] > \endhtmlonly Definition: =========== SUBROUTINE DLALN2( LTRANS, NA, NW, SMIN, CA, A, LDA, D1, D2, B, LDB, WR, WI, X, LDX, SCALE, XNORM, INFO ) LOGICAL LTRANS INTEGER INFO, LDA, LDB, LDX, NA, NW DOUBLE PRECISION CA, D1, D2, SCALE, SMIN, WI, WR, XNORM DOUBLE PRECISION A( LDA, * ), B( LDB, * ), X( LDX, * ) > \par Purpose: ============= > > \verbatim > > DLALN2 solves a system of the form (ca A - w D ) X = s B > or (ca A**T - w D) X = s B with possible scaling ("s") and > perturbation of A. (A**T means A-transpose.) > > A is an NA x NA real matrix, ca is a real scalar, D is an NA x NA > real diagonal matrix, w is a real or complex value, and X and B are > NA x 1 matrices -- real if w is real, complex if w is complex. NA > may be 1 or 2. > > If w is complex, X and B are represented as NA x 2 matrices, > the first column of each being the real part and the second > being the imaginary part. > > "s" is a scaling factor (.LE. 1), computed by DLALN2, which is > so chosen that X can be computed without overflow. X is further > scaled if necessary to assure that norm(ca A - w D)*norm(X) is less > than overflow. > > If both singular values of (ca A - w D) are less than SMIN, > SMIN*identity will be used instead of (ca A - w D). If only one > singular value is less than SMIN, one element of (ca A - w D) will be > perturbed enough to make the smallest singular value roughly SMIN. > If both singular values are at least SMIN, (ca A - w D) will not be > perturbed. In any case, the perturbation will be at most some small > multiple of max( SMIN, ulp*norm(ca A - w D) ). The singular values > are computed by infinity-norm approximations, and thus will only be > correct to a factor of 2 or so. > > Note: all input quantities are assumed to be smaller than overflow > by a reasonable factor. (See BIGNUM.) > \endverbatim Arguments: ========== > \param[in] LTRANS > \verbatim > LTRANS is LOGICAL > =.TRUE.: A-transpose will be used. > =.FALSE.: A will be used (not transposed.) > \endverbatim > > \param[in] NA > \verbatim > NA is INTEGER > The size of the matrix A. It may (only) be 1 or 2. > \endverbatim > > \param[in] NW > \verbatim > NW is INTEGER > 1 if "w" is real, 2 if "w" is complex. It may only be 1 > or 2. > \endverbatim > > \param[in] SMIN > \verbatim > SMIN is DOUBLE PRECISION > The desired lower bound on the singular values of A. This > should be a safe distance away from underflow or overflow, > say, between (underflow/machine precision) and (machine > precision * overflow ). (See BIGNUM and ULP.) > \endverbatim > > \param[in] CA > \verbatim > CA is DOUBLE PRECISION > The coefficient c, which A is multiplied by. > \endverbatim > > \param[in] A > \verbatim > A is DOUBLE PRECISION array, dimension (LDA,NA) > The NA x NA matrix A. > \endverbatim > > \param[in] LDA > \verbatim > LDA is INTEGER > The leading dimension of A. It must be at least NA. > \endverbatim > > \param[in] D1 > \verbatim > D1 is DOUBLE PRECISION > The 1,1 element in the diagonal matrix D. > \endverbatim > > \param[in] D2 > \verbatim > D2 is DOUBLE PRECISION > The 2,2 element in the diagonal matrix D. Not used if NW=1. > \endverbatim > > \param[in] B > \verbatim > B is DOUBLE PRECISION array, dimension (LDB,NW) > The NA x NW matrix B (right-hand side). If NW=2 ("w" is > complex), column 1 contains the real part of B and column 2 > contains the imaginary part. > \endverbatim > > \param[in] LDB > \verbatim > LDB is INTEGER > The leading dimension of B. It must be at least NA. > \endverbatim > > \param[in] WR > \verbatim > WR is DOUBLE PRECISION > The real part of the scalar "w". > \endverbatim > > \param[in] WI > \verbatim > WI is DOUBLE PRECISION > The imaginary part of the scalar "w". Not used if NW=1. > \endverbatim > > \param[out] X > \verbatim > X is DOUBLE PRECISION array, dimension (LDX,NW) > The NA x NW matrix X (unknowns), as computed by DLALN2. > If NW=2 ("w" is complex), on exit, column 1 will contain > the real part of X and column 2 will contain the imaginary > part. > \endverbatim > > \param[in] LDX > \verbatim > LDX is INTEGER > The leading dimension of X. It must be at least NA. > \endverbatim > > \param[out] SCALE > \verbatim > SCALE is DOUBLE PRECISION > The scale factor that B must be multiplied by to insure > that overflow does not occur when computing X. Thus, > (ca A - w D) X will be SCALE*B, not B (ignoring > perturbations of A.) It will be at most 1. > \endverbatim > > \param[out] XNORM > \verbatim > XNORM is DOUBLE PRECISION > The infinity-norm of X, when X is regarded as an NA x NW > real matrix. > \endverbatim > > \param[out] INFO > \verbatim > INFO is INTEGER > An error flag. It will be set to zero if no error occurs, > a negative number if an argument is in error, or a positive > number if ca A - w D had to be perturbed. > The possible values are: > = 0: No error occurred, and (ca A - w D) did not have to be > perturbed. > = 1: (ca A - w D) had to be perturbed to make its smallest > (or only) singular value greater than SMIN. > NOTE: In the interests of speed, this routine does not > check the inputs for errors. > \endverbatim Authors: ======== > \author Univ. of Tennessee > \author Univ. of California Berkeley > \author Univ. of Colorado Denver > \author NAG Ltd. > \date September 2012 > \ingroup doubleOTHERauxiliary ===================================================================== Subroutine */ int igraphdlaln2_(logical *ltrans, integer *na, integer *nw, doublereal *smin, doublereal *ca, doublereal *a, integer *lda, doublereal *d1, doublereal *d2, doublereal *b, integer *ldb, doublereal *wr, doublereal *wi, doublereal *x, integer *ldx, doublereal *scale, doublereal *xnorm, integer *info) { /* Initialized data */ static logical zswap[4] = { FALSE_,FALSE_,TRUE_,TRUE_ }; static logical rswap[4] = { FALSE_,TRUE_,FALSE_,TRUE_ }; static integer ipivot[16] /* was [4][4] */ = { 1,2,3,4,2,1,4,3,3,4,1,2, 4,3,2,1 }; /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, x_dim1, x_offset; doublereal d__1, d__2, d__3, d__4, d__5, d__6; IGRAPH_F77_SAVE doublereal equiv_0[4], equiv_1[4]; /* Local variables */ integer j; #define ci (equiv_0) #define cr (equiv_1) doublereal bi1, bi2, br1, br2, xi1, xi2, xr1, xr2, ci21, ci22, cr21, cr22, li21, csi, ui11, lr21, ui12, ui22; #define civ (equiv_0) doublereal csr, ur11, ur12, ur22; #define crv (equiv_1) doublereal bbnd, cmax, ui11r, ui12s, temp, ur11r, ur12s, u22abs; integer icmax; doublereal bnorm, cnorm, smini; extern doublereal igraphdlamch_(char *); extern /* Subroutine */ int igraphdladiv_(doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *); doublereal bignum, smlnum; /* -- LAPACK auxiliary routine (version 3.4.2) -- -- LAPACK is a software package provided by Univ. of Tennessee, -- -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- September 2012 ===================================================================== Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; x_dim1 = *ldx; x_offset = 1 + x_dim1; x -= x_offset; /* Function Body Compute BIGNUM */ smlnum = 2. * igraphdlamch_("Safe minimum"); bignum = 1. / smlnum; smini = max(*smin,smlnum); /* Don't check for input errors */ *info = 0; /* Standard Initializations */ *scale = 1.; if (*na == 1) { /* 1 x 1 (i.e., scalar) system C X = B */ if (*nw == 1) { /* Real 1x1 system. C = ca A - w D */ csr = *ca * a[a_dim1 + 1] - *wr * *d1; cnorm = abs(csr); /* If | C | < SMINI, use C = SMINI */ if (cnorm < smini) { csr = smini; cnorm = smini; *info = 1; } /* Check scaling for X = B / C */ bnorm = (d__1 = b[b_dim1 + 1], abs(d__1)); if (cnorm < 1. && bnorm > 1.) { if (bnorm > bignum * cnorm) { *scale = 1. / bnorm; } } /* Compute X */ x[x_dim1 + 1] = b[b_dim1 + 1] * *scale / csr; *xnorm = (d__1 = x[x_dim1 + 1], abs(d__1)); } else { /* Complex 1x1 system (w is complex) C = ca A - w D */ csr = *ca * a[a_dim1 + 1] - *wr * *d1; csi = -(*wi) * *d1; cnorm = abs(csr) + abs(csi); /* If | C | < SMINI, use C = SMINI */ if (cnorm < smini) { csr = smini; csi = 0.; cnorm = smini; *info = 1; } /* Check scaling for X = B / C */ bnorm = (d__1 = b[b_dim1 + 1], abs(d__1)) + (d__2 = b[(b_dim1 << 1) + 1], abs(d__2)); if (cnorm < 1. && bnorm > 1.) { if (bnorm > bignum * cnorm) { *scale = 1. / bnorm; } } /* Compute X */ d__1 = *scale * b[b_dim1 + 1]; d__2 = *scale * b[(b_dim1 << 1) + 1]; igraphdladiv_(&d__1, &d__2, &csr, &csi, &x[x_dim1 + 1], &x[(x_dim1 << 1) + 1]); *xnorm = (d__1 = x[x_dim1 + 1], abs(d__1)) + (d__2 = x[(x_dim1 << 1) + 1], abs(d__2)); } } else { /* 2x2 System Compute the real part of C = ca A - w D (or ca A**T - w D ) */ cr[0] = *ca * a[a_dim1 + 1] - *wr * *d1; cr[3] = *ca * a[(a_dim1 << 1) + 2] - *wr * *d2; if (*ltrans) { cr[2] = *ca * a[a_dim1 + 2]; cr[1] = *ca * a[(a_dim1 << 1) + 1]; } else { cr[1] = *ca * a[a_dim1 + 2]; cr[2] = *ca * a[(a_dim1 << 1) + 1]; } if (*nw == 1) { /* Real 2x2 system (w is real) Find the largest element in C */ cmax = 0.; icmax = 0; for (j = 1; j <= 4; ++j) { if ((d__1 = crv[j - 1], abs(d__1)) > cmax) { cmax = (d__1 = crv[j - 1], abs(d__1)); icmax = j; } /* L10: */ } /* If norm(C) < SMINI, use SMINI*identity. */ if (cmax < smini) { /* Computing MAX */ d__3 = (d__1 = b[b_dim1 + 1], abs(d__1)), d__4 = (d__2 = b[ b_dim1 + 2], abs(d__2)); bnorm = max(d__3,d__4); if (smini < 1. && bnorm > 1.) { if (bnorm > bignum * smini) { *scale = 1. / bnorm; } } temp = *scale / smini; x[x_dim1 + 1] = temp * b[b_dim1 + 1]; x[x_dim1 + 2] = temp * b[b_dim1 + 2]; *xnorm = temp * bnorm; *info = 1; return 0; } /* Gaussian elimination with complete pivoting. */ ur11 = crv[icmax - 1]; cr21 = crv[ipivot[(icmax << 2) - 3] - 1]; ur12 = crv[ipivot[(icmax << 2) - 2] - 1]; cr22 = crv[ipivot[(icmax << 2) - 1] - 1]; ur11r = 1. / ur11; lr21 = ur11r * cr21; ur22 = cr22 - ur12 * lr21; /* If smaller pivot < SMINI, use SMINI */ if (abs(ur22) < smini) { ur22 = smini; *info = 1; } if (rswap[icmax - 1]) { br1 = b[b_dim1 + 2]; br2 = b[b_dim1 + 1]; } else { br1 = b[b_dim1 + 1]; br2 = b[b_dim1 + 2]; } br2 -= lr21 * br1; /* Computing MAX */ d__2 = (d__1 = br1 * (ur22 * ur11r), abs(d__1)), d__3 = abs(br2); bbnd = max(d__2,d__3); if (bbnd > 1. && abs(ur22) < 1.) { if (bbnd >= bignum * abs(ur22)) { *scale = 1. / bbnd; } } xr2 = br2 * *scale / ur22; xr1 = *scale * br1 * ur11r - xr2 * (ur11r * ur12); if (zswap[icmax - 1]) { x[x_dim1 + 1] = xr2; x[x_dim1 + 2] = xr1; } else { x[x_dim1 + 1] = xr1; x[x_dim1 + 2] = xr2; } /* Computing MAX */ d__1 = abs(xr1), d__2 = abs(xr2); *xnorm = max(d__1,d__2); /* Further scaling if norm(A) norm(X) > overflow */ if (*xnorm > 1. && cmax > 1.) { if (*xnorm > bignum / cmax) { temp = cmax / bignum; x[x_dim1 + 1] = temp * x[x_dim1 + 1]; x[x_dim1 + 2] = temp * x[x_dim1 + 2]; *xnorm = temp * *xnorm; *scale = temp * *scale; } } } else { /* Complex 2x2 system (w is complex) Find the largest element in C */ ci[0] = -(*wi) * *d1; ci[1] = 0.; ci[2] = 0.; ci[3] = -(*wi) * *d2; cmax = 0.; icmax = 0; for (j = 1; j <= 4; ++j) { if ((d__1 = crv[j - 1], abs(d__1)) + (d__2 = civ[j - 1], abs( d__2)) > cmax) { cmax = (d__1 = crv[j - 1], abs(d__1)) + (d__2 = civ[j - 1] , abs(d__2)); icmax = j; } /* L20: */ } /* If norm(C) < SMINI, use SMINI*identity. */ if (cmax < smini) { /* Computing MAX */ d__5 = (d__1 = b[b_dim1 + 1], abs(d__1)) + (d__2 = b[(b_dim1 << 1) + 1], abs(d__2)), d__6 = (d__3 = b[b_dim1 + 2], abs(d__3)) + (d__4 = b[(b_dim1 << 1) + 2], abs(d__4)); bnorm = max(d__5,d__6); if (smini < 1. && bnorm > 1.) { if (bnorm > bignum * smini) { *scale = 1. / bnorm; } } temp = *scale / smini; x[x_dim1 + 1] = temp * b[b_dim1 + 1]; x[x_dim1 + 2] = temp * b[b_dim1 + 2]; x[(x_dim1 << 1) + 1] = temp * b[(b_dim1 << 1) + 1]; x[(x_dim1 << 1) + 2] = temp * b[(b_dim1 << 1) + 2]; *xnorm = temp * bnorm; *info = 1; return 0; } /* Gaussian elimination with complete pivoting. */ ur11 = crv[icmax - 1]; ui11 = civ[icmax - 1]; cr21 = crv[ipivot[(icmax << 2) - 3] - 1]; ci21 = civ[ipivot[(icmax << 2) - 3] - 1]; ur12 = crv[ipivot[(icmax << 2) - 2] - 1]; ui12 = civ[ipivot[(icmax << 2) - 2] - 1]; cr22 = crv[ipivot[(icmax << 2) - 1] - 1]; ci22 = civ[ipivot[(icmax << 2) - 1] - 1]; if (icmax == 1 || icmax == 4) { /* Code when off-diagonals of pivoted C are real */ if (abs(ur11) > abs(ui11)) { temp = ui11 / ur11; /* Computing 2nd power */ d__1 = temp; ur11r = 1. / (ur11 * (d__1 * d__1 + 1.)); ui11r = -temp * ur11r; } else { temp = ur11 / ui11; /* Computing 2nd power */ d__1 = temp; ui11r = -1. / (ui11 * (d__1 * d__1 + 1.)); ur11r = -temp * ui11r; } lr21 = cr21 * ur11r; li21 = cr21 * ui11r; ur12s = ur12 * ur11r; ui12s = ur12 * ui11r; ur22 = cr22 - ur12 * lr21; ui22 = ci22 - ur12 * li21; } else { /* Code when diagonals of pivoted C are real */ ur11r = 1. / ur11; ui11r = 0.; lr21 = cr21 * ur11r; li21 = ci21 * ur11r; ur12s = ur12 * ur11r; ui12s = ui12 * ur11r; ur22 = cr22 - ur12 * lr21 + ui12 * li21; ui22 = -ur12 * li21 - ui12 * lr21; } u22abs = abs(ur22) + abs(ui22); /* If smaller pivot < SMINI, use SMINI */ if (u22abs < smini) { ur22 = smini; ui22 = 0.; *info = 1; } if (rswap[icmax - 1]) { br2 = b[b_dim1 + 1]; br1 = b[b_dim1 + 2]; bi2 = b[(b_dim1 << 1) + 1]; bi1 = b[(b_dim1 << 1) + 2]; } else { br1 = b[b_dim1 + 1]; br2 = b[b_dim1 + 2]; bi1 = b[(b_dim1 << 1) + 1]; bi2 = b[(b_dim1 << 1) + 2]; } br2 = br2 - lr21 * br1 + li21 * bi1; bi2 = bi2 - li21 * br1 - lr21 * bi1; /* Computing MAX */ d__1 = (abs(br1) + abs(bi1)) * (u22abs * (abs(ur11r) + abs(ui11r)) ), d__2 = abs(br2) + abs(bi2); bbnd = max(d__1,d__2); if (bbnd > 1. && u22abs < 1.) { if (bbnd >= bignum * u22abs) { *scale = 1. / bbnd; br1 = *scale * br1; bi1 = *scale * bi1; br2 = *scale * br2; bi2 = *scale * bi2; } } igraphdladiv_(&br2, &bi2, &ur22, &ui22, &xr2, &xi2); xr1 = ur11r * br1 - ui11r * bi1 - ur12s * xr2 + ui12s * xi2; xi1 = ui11r * br1 + ur11r * bi1 - ui12s * xr2 - ur12s * xi2; if (zswap[icmax - 1]) { x[x_dim1 + 1] = xr2; x[x_dim1 + 2] = xr1; x[(x_dim1 << 1) + 1] = xi2; x[(x_dim1 << 1) + 2] = xi1; } else { x[x_dim1 + 1] = xr1; x[x_dim1 + 2] = xr2; x[(x_dim1 << 1) + 1] = xi1; x[(x_dim1 << 1) + 2] = xi2; } /* Computing MAX */ d__1 = abs(xr1) + abs(xi1), d__2 = abs(xr2) + abs(xi2); *xnorm = max(d__1,d__2); /* Further scaling if norm(A) norm(X) > overflow */ if (*xnorm > 1. && cmax > 1.) { if (*xnorm > bignum / cmax) { temp = cmax / bignum; x[x_dim1 + 1] = temp * x[x_dim1 + 1]; x[x_dim1 + 2] = temp * x[x_dim1 + 2]; x[(x_dim1 << 1) + 1] = temp * x[(x_dim1 << 1) + 1]; x[(x_dim1 << 1) + 2] = temp * x[(x_dim1 << 1) + 2]; *xnorm = temp * *xnorm; *scale = temp * *scale; } } } } return 0; /* End of DLALN2 */ } /* igraphdlaln2_ */ #undef crv #undef civ #undef cr #undef ci