/* -- translated by f2c (version 20191129).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
/* > \brief \b DLANEG computes the Sturm count.
=========== DOCUMENTATION ===========
Online html documentation available at
http://www.netlib.org/lapack/explore-html/
> \htmlonly
> Download DLANEG + dependencies
>
> [TGZ]
>
> [ZIP]
>
> [TXT]
> \endhtmlonly
Definition:
===========
INTEGER FUNCTION DLANEG( N, D, LLD, SIGMA, PIVMIN, R )
INTEGER N, R
DOUBLE PRECISION PIVMIN, SIGMA
DOUBLE PRECISION D( * ), LLD( * )
> \par Purpose:
=============
>
> \verbatim
>
> DLANEG computes the Sturm count, the number of negative pivots
> encountered while factoring tridiagonal T - sigma I = L D L^T.
> This implementation works directly on the factors without forming
> the tridiagonal matrix T. The Sturm count is also the number of
> eigenvalues of T less than sigma.
>
> This routine is called from DLARRB.
>
> The current routine does not use the PIVMIN parameter but rather
> requires IEEE-754 propagation of Infinities and NaNs. This
> routine also has no input range restrictions but does require
> default exception handling such that x/0 produces Inf when x is
> non-zero, and Inf/Inf produces NaN. For more information, see:
>
> Marques, Riedy, and Voemel, "Benefits of IEEE-754 Features in
> Modern Symmetric Tridiagonal Eigensolvers," SIAM Journal on
> Scientific Computing, v28, n5, 2006. DOI 10.1137/050641624
> (Tech report version in LAWN 172 with the same title.)
> \endverbatim
Arguments:
==========
> \param[in] N
> \verbatim
> N is INTEGER
> The order of the matrix.
> \endverbatim
>
> \param[in] D
> \verbatim
> D is DOUBLE PRECISION array, dimension (N)
> The N diagonal elements of the diagonal matrix D.
> \endverbatim
>
> \param[in] LLD
> \verbatim
> LLD is DOUBLE PRECISION array, dimension (N-1)
> The (N-1) elements L(i)*L(i)*D(i).
> \endverbatim
>
> \param[in] SIGMA
> \verbatim
> SIGMA is DOUBLE PRECISION
> Shift amount in T - sigma I = L D L^T.
> \endverbatim
>
> \param[in] PIVMIN
> \verbatim
> PIVMIN is DOUBLE PRECISION
> The minimum pivot in the Sturm sequence. May be used
> when zero pivots are encountered on non-IEEE-754
> architectures.
> \endverbatim
>
> \param[in] R
> \verbatim
> R is INTEGER
> The twist index for the twisted factorization that is used
> for the negcount.
> \endverbatim
Authors:
========
> \author Univ. of Tennessee
> \author Univ. of California Berkeley
> \author Univ. of Colorado Denver
> \author NAG Ltd.
> \date September 2012
> \ingroup auxOTHERauxiliary
> \par Contributors:
==================
>
> Osni Marques, LBNL/NERSC, USA \n
> Christof Voemel, University of California, Berkeley, USA \n
> Jason Riedy, University of California, Berkeley, USA \n
>
===================================================================== */
integer igraphdlaneg_(integer *n, doublereal *d__, doublereal *lld, doublereal *
sigma, doublereal *pivmin, integer *r__)
{
/* System generated locals */
integer ret_val, i__1, i__2, i__3, i__4;
/* Local variables */
integer j;
doublereal p, t;
integer bj;
doublereal tmp;
integer neg1, neg2;
doublereal bsav, gamma, dplus;
extern logical igraphdisnan_(doublereal *);
integer negcnt;
logical sawnan;
doublereal dminus;
/* -- LAPACK auxiliary routine (version 3.4.2) --
-- LAPACK is a software package provided by Univ. of Tennessee, --
-- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
September 2012
=====================================================================
Some architectures propagate Infinities and NaNs very slowly, so
the code computes counts in BLKLEN chunks. Then a NaN can
propagate at most BLKLEN columns before being detected. This is
not a general tuning parameter; it needs only to be just large
enough that the overhead is tiny in common cases.
Parameter adjustments */
--lld;
--d__;
/* Function Body */
negcnt = 0;
/* I) upper part: L D L^T - SIGMA I = L+ D+ L+^T */
t = -(*sigma);
i__1 = *r__ - 1;
for (bj = 1; bj <= i__1; bj += 128) {
neg1 = 0;
bsav = t;
/* Computing MIN */
i__3 = bj + 127, i__4 = *r__ - 1;
i__2 = min(i__3,i__4);
for (j = bj; j <= i__2; ++j) {
dplus = d__[j] + t;
if (dplus < 0.) {
++neg1;
}
tmp = t / dplus;
t = tmp * lld[j] - *sigma;
/* L21: */
}
sawnan = igraphdisnan_(&t);
/* Run a slower version of the above loop if a NaN is detected.
A NaN should occur only with a zero pivot after an infinite
pivot. In that case, substituting 1 for T/DPLUS is the
correct limit. */
if (sawnan) {
neg1 = 0;
t = bsav;
/* Computing MIN */
i__3 = bj + 127, i__4 = *r__ - 1;
i__2 = min(i__3,i__4);
for (j = bj; j <= i__2; ++j) {
dplus = d__[j] + t;
if (dplus < 0.) {
++neg1;
}
tmp = t / dplus;
if (igraphdisnan_(&tmp)) {
tmp = 1.;
}
t = tmp * lld[j] - *sigma;
/* L22: */
}
}
negcnt += neg1;
/* L210: */
}
/* II) lower part: L D L^T - SIGMA I = U- D- U-^T */
p = d__[*n] - *sigma;
i__1 = *r__;
for (bj = *n - 1; bj >= i__1; bj += -128) {
neg2 = 0;
bsav = p;
/* Computing MAX */
i__3 = bj - 127;
i__2 = max(i__3,*r__);
for (j = bj; j >= i__2; --j) {
dminus = lld[j] + p;
if (dminus < 0.) {
++neg2;
}
tmp = p / dminus;
p = tmp * d__[j] - *sigma;
/* L23: */
}
sawnan = igraphdisnan_(&p);
/* As above, run a slower version that substitutes 1 for Inf/Inf. */
if (sawnan) {
neg2 = 0;
p = bsav;
/* Computing MAX */
i__3 = bj - 127;
i__2 = max(i__3,*r__);
for (j = bj; j >= i__2; --j) {
dminus = lld[j] + p;
if (dminus < 0.) {
++neg2;
}
tmp = p / dminus;
if (igraphdisnan_(&tmp)) {
tmp = 1.;
}
p = tmp * d__[j] - *sigma;
/* L24: */
}
}
negcnt += neg2;
/* L230: */
}
/* III) Twist index
T was shifted by SIGMA initially. */
gamma = t + *sigma + p;
if (gamma < 0.) {
++negcnt;
}
ret_val = negcnt;
return ret_val;
} /* igraphdlaneg_ */