/* -- translated by f2c (version 20191129). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* > \brief \b DLANEG computes the Sturm count. =========== DOCUMENTATION =========== Online html documentation available at http://www.netlib.org/lapack/explore-html/ > \htmlonly > Download DLANEG + dependencies > > [TGZ] > > [ZIP] > > [TXT] > \endhtmlonly Definition: =========== INTEGER FUNCTION DLANEG( N, D, LLD, SIGMA, PIVMIN, R ) INTEGER N, R DOUBLE PRECISION PIVMIN, SIGMA DOUBLE PRECISION D( * ), LLD( * ) > \par Purpose: ============= > > \verbatim > > DLANEG computes the Sturm count, the number of negative pivots > encountered while factoring tridiagonal T - sigma I = L D L^T. > This implementation works directly on the factors without forming > the tridiagonal matrix T. The Sturm count is also the number of > eigenvalues of T less than sigma. > > This routine is called from DLARRB. > > The current routine does not use the PIVMIN parameter but rather > requires IEEE-754 propagation of Infinities and NaNs. This > routine also has no input range restrictions but does require > default exception handling such that x/0 produces Inf when x is > non-zero, and Inf/Inf produces NaN. For more information, see: > > Marques, Riedy, and Voemel, "Benefits of IEEE-754 Features in > Modern Symmetric Tridiagonal Eigensolvers," SIAM Journal on > Scientific Computing, v28, n5, 2006. DOI 10.1137/050641624 > (Tech report version in LAWN 172 with the same title.) > \endverbatim Arguments: ========== > \param[in] N > \verbatim > N is INTEGER > The order of the matrix. > \endverbatim > > \param[in] D > \verbatim > D is DOUBLE PRECISION array, dimension (N) > The N diagonal elements of the diagonal matrix D. > \endverbatim > > \param[in] LLD > \verbatim > LLD is DOUBLE PRECISION array, dimension (N-1) > The (N-1) elements L(i)*L(i)*D(i). > \endverbatim > > \param[in] SIGMA > \verbatim > SIGMA is DOUBLE PRECISION > Shift amount in T - sigma I = L D L^T. > \endverbatim > > \param[in] PIVMIN > \verbatim > PIVMIN is DOUBLE PRECISION > The minimum pivot in the Sturm sequence. May be used > when zero pivots are encountered on non-IEEE-754 > architectures. > \endverbatim > > \param[in] R > \verbatim > R is INTEGER > The twist index for the twisted factorization that is used > for the negcount. > \endverbatim Authors: ======== > \author Univ. of Tennessee > \author Univ. of California Berkeley > \author Univ. of Colorado Denver > \author NAG Ltd. > \date September 2012 > \ingroup auxOTHERauxiliary > \par Contributors: ================== > > Osni Marques, LBNL/NERSC, USA \n > Christof Voemel, University of California, Berkeley, USA \n > Jason Riedy, University of California, Berkeley, USA \n > ===================================================================== */ integer igraphdlaneg_(integer *n, doublereal *d__, doublereal *lld, doublereal * sigma, doublereal *pivmin, integer *r__) { /* System generated locals */ integer ret_val, i__1, i__2, i__3, i__4; /* Local variables */ integer j; doublereal p, t; integer bj; doublereal tmp; integer neg1, neg2; doublereal bsav, gamma, dplus; extern logical igraphdisnan_(doublereal *); integer negcnt; logical sawnan; doublereal dminus; /* -- LAPACK auxiliary routine (version 3.4.2) -- -- LAPACK is a software package provided by Univ. of Tennessee, -- -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- September 2012 ===================================================================== Some architectures propagate Infinities and NaNs very slowly, so the code computes counts in BLKLEN chunks. Then a NaN can propagate at most BLKLEN columns before being detected. This is not a general tuning parameter; it needs only to be just large enough that the overhead is tiny in common cases. Parameter adjustments */ --lld; --d__; /* Function Body */ negcnt = 0; /* I) upper part: L D L^T - SIGMA I = L+ D+ L+^T */ t = -(*sigma); i__1 = *r__ - 1; for (bj = 1; bj <= i__1; bj += 128) { neg1 = 0; bsav = t; /* Computing MIN */ i__3 = bj + 127, i__4 = *r__ - 1; i__2 = min(i__3,i__4); for (j = bj; j <= i__2; ++j) { dplus = d__[j] + t; if (dplus < 0.) { ++neg1; } tmp = t / dplus; t = tmp * lld[j] - *sigma; /* L21: */ } sawnan = igraphdisnan_(&t); /* Run a slower version of the above loop if a NaN is detected. A NaN should occur only with a zero pivot after an infinite pivot. In that case, substituting 1 for T/DPLUS is the correct limit. */ if (sawnan) { neg1 = 0; t = bsav; /* Computing MIN */ i__3 = bj + 127, i__4 = *r__ - 1; i__2 = min(i__3,i__4); for (j = bj; j <= i__2; ++j) { dplus = d__[j] + t; if (dplus < 0.) { ++neg1; } tmp = t / dplus; if (igraphdisnan_(&tmp)) { tmp = 1.; } t = tmp * lld[j] - *sigma; /* L22: */ } } negcnt += neg1; /* L210: */ } /* II) lower part: L D L^T - SIGMA I = U- D- U-^T */ p = d__[*n] - *sigma; i__1 = *r__; for (bj = *n - 1; bj >= i__1; bj += -128) { neg2 = 0; bsav = p; /* Computing MAX */ i__3 = bj - 127; i__2 = max(i__3,*r__); for (j = bj; j >= i__2; --j) { dminus = lld[j] + p; if (dminus < 0.) { ++neg2; } tmp = p / dminus; p = tmp * d__[j] - *sigma; /* L23: */ } sawnan = igraphdisnan_(&p); /* As above, run a slower version that substitutes 1 for Inf/Inf. */ if (sawnan) { neg2 = 0; p = bsav; /* Computing MAX */ i__3 = bj - 127; i__2 = max(i__3,*r__); for (j = bj; j >= i__2; --j) { dminus = lld[j] + p; if (dminus < 0.) { ++neg2; } tmp = p / dminus; if (igraphdisnan_(&tmp)) { tmp = 1.; } p = tmp * d__[j] - *sigma; /* L24: */ } } negcnt += neg2; /* L230: */ } /* III) Twist index T was shifted by SIGMA initially. */ gamma = t + *sigma + p; if (gamma < 0.) { ++negcnt; } ret_val = negcnt; return ret_val; } /* igraphdlaneg_ */