/* -- translated by f2c (version 20191129). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Table of constant values */ static integer c__1 = 1; /* > \brief \b DLANST returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the ele ment of largest absolute value of a real symmetric tridiagonal matrix. =========== DOCUMENTATION =========== Online html documentation available at http://www.netlib.org/lapack/explore-html/ > \htmlonly > Download DLANST + dependencies > > [TGZ] > > [ZIP] > > [TXT] > \endhtmlonly Definition: =========== DOUBLE PRECISION FUNCTION DLANST( NORM, N, D, E ) CHARACTER NORM INTEGER N DOUBLE PRECISION D( * ), E( * ) > \par Purpose: ============= > > \verbatim > > DLANST returns the value of the one norm, or the Frobenius norm, or > the infinity norm, or the element of largest absolute value of a > real symmetric tridiagonal matrix A. > \endverbatim > > \return DLANST > \verbatim > > DLANST = ( max(abs(A(i,j))), NORM = 'M' or 'm' > ( > ( norm1(A), NORM = '1', 'O' or 'o' > ( > ( normI(A), NORM = 'I' or 'i' > ( > ( normF(A), NORM = 'F', 'f', 'E' or 'e' > > where norm1 denotes the one norm of a matrix (maximum column sum), > normI denotes the infinity norm of a matrix (maximum row sum) and > normF denotes the Frobenius norm of a matrix (square root of sum of > squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. > \endverbatim Arguments: ========== > \param[in] NORM > \verbatim > NORM is CHARACTER*1 > Specifies the value to be returned in DLANST as described > above. > \endverbatim > > \param[in] N > \verbatim > N is INTEGER > The order of the matrix A. N >= 0. When N = 0, DLANST is > set to zero. > \endverbatim > > \param[in] D > \verbatim > D is DOUBLE PRECISION array, dimension (N) > The diagonal elements of A. > \endverbatim > > \param[in] E > \verbatim > E is DOUBLE PRECISION array, dimension (N-1) > The (n-1) sub-diagonal or super-diagonal elements of A. > \endverbatim Authors: ======== > \author Univ. of Tennessee > \author Univ. of California Berkeley > \author Univ. of Colorado Denver > \author NAG Ltd. > \date September 2012 > \ingroup auxOTHERauxiliary ===================================================================== */ doublereal igraphdlanst_(char *norm, integer *n, doublereal *d__, doublereal *e) { /* System generated locals */ integer i__1; doublereal ret_val, d__1, d__2, d__3; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ integer i__; doublereal sum, scale; extern logical igraphlsame_(char *, char *); doublereal anorm; extern logical igraphdisnan_(doublereal *); extern /* Subroutine */ int igraphdlassq_(integer *, doublereal *, integer *, doublereal *, doublereal *); /* -- LAPACK auxiliary routine (version 3.4.2) -- -- LAPACK is a software package provided by Univ. of Tennessee, -- -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- September 2012 ===================================================================== Parameter adjustments */ --e; --d__; /* Function Body */ if (*n <= 0) { anorm = 0.; } else if (igraphlsame_(norm, "M")) { /* Find max(abs(A(i,j))). */ anorm = (d__1 = d__[*n], abs(d__1)); i__1 = *n - 1; for (i__ = 1; i__ <= i__1; ++i__) { sum = (d__1 = d__[i__], abs(d__1)); if (anorm < sum || igraphdisnan_(&sum)) { anorm = sum; } sum = (d__1 = e[i__], abs(d__1)); if (anorm < sum || igraphdisnan_(&sum)) { anorm = sum; } /* L10: */ } } else if (igraphlsame_(norm, "O") || *(unsigned char *) norm == '1' || igraphlsame_(norm, "I")) { /* Find norm1(A). */ if (*n == 1) { anorm = abs(d__[1]); } else { anorm = abs(d__[1]) + abs(e[1]); sum = (d__1 = e[*n - 1], abs(d__1)) + (d__2 = d__[*n], abs(d__2)); if (anorm < sum || igraphdisnan_(&sum)) { anorm = sum; } i__1 = *n - 1; for (i__ = 2; i__ <= i__1; ++i__) { sum = (d__1 = d__[i__], abs(d__1)) + (d__2 = e[i__], abs(d__2) ) + (d__3 = e[i__ - 1], abs(d__3)); if (anorm < sum || igraphdisnan_(&sum)) { anorm = sum; } /* L20: */ } } } else if (igraphlsame_(norm, "F") || igraphlsame_(norm, "E")) { /* Find normF(A). */ scale = 0.; sum = 1.; if (*n > 1) { i__1 = *n - 1; igraphdlassq_(&i__1, &e[1], &c__1, &scale, &sum); sum *= 2; } igraphdlassq_(n, &d__[1], &c__1, &scale, &sum); anorm = scale * sqrt(sum); } ret_val = anorm; return ret_val; /* End of DLANST */ } /* igraphdlanst_ */