/* -- translated by f2c (version 20191129). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Table of constant values */ static doublereal c_b4 = 1.; /* > \brief \b DLANV2 computes the Schur factorization of a real 2-by-2 nonsymmetric matrix in standard form. =========== DOCUMENTATION =========== Online html documentation available at http://www.netlib.org/lapack/explore-html/ > \htmlonly > Download DLANV2 + dependencies > > [TGZ] > > [ZIP] > > [TXT] > \endhtmlonly Definition: =========== SUBROUTINE DLANV2( A, B, C, D, RT1R, RT1I, RT2R, RT2I, CS, SN ) DOUBLE PRECISION A, B, C, CS, D, RT1I, RT1R, RT2I, RT2R, SN > \par Purpose: ============= > > \verbatim > > DLANV2 computes the Schur factorization of a real 2-by-2 nonsymmetric > matrix in standard form: > > [ A B ] = [ CS -SN ] [ AA BB ] [ CS SN ] > [ C D ] [ SN CS ] [ CC DD ] [-SN CS ] > > where either > 1) CC = 0 so that AA and DD are real eigenvalues of the matrix, or > 2) AA = DD and BB*CC < 0, so that AA + or - sqrt(BB*CC) are complex > conjugate eigenvalues. > \endverbatim Arguments: ========== > \param[in,out] A > \verbatim > A is DOUBLE PRECISION > \endverbatim > > \param[in,out] B > \verbatim > B is DOUBLE PRECISION > \endverbatim > > \param[in,out] C > \verbatim > C is DOUBLE PRECISION > \endverbatim > > \param[in,out] D > \verbatim > D is DOUBLE PRECISION > On entry, the elements of the input matrix. > On exit, they are overwritten by the elements of the > standardised Schur form. > \endverbatim > > \param[out] RT1R > \verbatim > RT1R is DOUBLE PRECISION > \endverbatim > > \param[out] RT1I > \verbatim > RT1I is DOUBLE PRECISION > \endverbatim > > \param[out] RT2R > \verbatim > RT2R is DOUBLE PRECISION > \endverbatim > > \param[out] RT2I > \verbatim > RT2I is DOUBLE PRECISION > The real and imaginary parts of the eigenvalues. If the > eigenvalues are a complex conjugate pair, RT1I > 0. > \endverbatim > > \param[out] CS > \verbatim > CS is DOUBLE PRECISION > \endverbatim > > \param[out] SN > \verbatim > SN is DOUBLE PRECISION > Parameters of the rotation matrix. > \endverbatim Authors: ======== > \author Univ. of Tennessee > \author Univ. of California Berkeley > \author Univ. of Colorado Denver > \author NAG Ltd. > \date September 2012 > \ingroup doubleOTHERauxiliary > \par Further Details: ===================== > > \verbatim > > Modified by V. Sima, Research Institute for Informatics, Bucharest, > Romania, to reduce the risk of cancellation errors, > when computing real eigenvalues, and to ensure, if possible, that > abs(RT1R) >= abs(RT2R). > \endverbatim > ===================================================================== Subroutine */ int igraphdlanv2_(doublereal *a, doublereal *b, doublereal *c__, doublereal *d__, doublereal *rt1r, doublereal *rt1i, doublereal *rt2r, doublereal *rt2i, doublereal *cs, doublereal *sn) { /* System generated locals */ doublereal d__1, d__2; /* Builtin functions */ double d_sign(doublereal *, doublereal *), sqrt(doublereal); /* Local variables */ doublereal p, z__, aa, bb, cc, dd, cs1, sn1, sab, sac, eps, tau, temp, scale, bcmax, bcmis, sigma; extern doublereal igraphdlapy2_(doublereal *, doublereal *), igraphdlamch_(char *); /* -- LAPACK auxiliary routine (version 3.4.2) -- -- LAPACK is a software package provided by Univ. of Tennessee, -- -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- September 2012 ===================================================================== */ eps = igraphdlamch_("P"); if (*c__ == 0.) { *cs = 1.; *sn = 0.; goto L10; } else if (*b == 0.) { /* Swap rows and columns */ *cs = 0.; *sn = 1.; temp = *d__; *d__ = *a; *a = temp; *b = -(*c__); *c__ = 0.; goto L10; } else if (*a - *d__ == 0. && d_sign(&c_b4, b) != d_sign(&c_b4, c__)) { *cs = 1.; *sn = 0.; goto L10; } else { temp = *a - *d__; p = temp * .5; /* Computing MAX */ d__1 = abs(*b), d__2 = abs(*c__); bcmax = max(d__1,d__2); /* Computing MIN */ d__1 = abs(*b), d__2 = abs(*c__); bcmis = min(d__1,d__2) * d_sign(&c_b4, b) * d_sign(&c_b4, c__); /* Computing MAX */ d__1 = abs(p); scale = max(d__1,bcmax); z__ = p / scale * p + bcmax / scale * bcmis; /* If Z is of the order of the machine accuracy, postpone the decision on the nature of eigenvalues */ if (z__ >= eps * 4.) { /* Real eigenvalues. Compute A and D. */ d__1 = sqrt(scale) * sqrt(z__); z__ = p + d_sign(&d__1, &p); *a = *d__ + z__; *d__ -= bcmax / z__ * bcmis; /* Compute B and the rotation matrix */ tau = igraphdlapy2_(c__, &z__); *cs = z__ / tau; *sn = *c__ / tau; *b -= *c__; *c__ = 0.; } else { /* Complex eigenvalues, or real (almost) equal eigenvalues. Make diagonal elements equal. */ sigma = *b + *c__; tau = igraphdlapy2_(&sigma, &temp); *cs = sqrt((abs(sigma) / tau + 1.) * .5); *sn = -(p / (tau * *cs)) * d_sign(&c_b4, &sigma); /* Compute [ AA BB ] = [ A B ] [ CS -SN ] [ CC DD ] [ C D ] [ SN CS ] */ aa = *a * *cs + *b * *sn; bb = -(*a) * *sn + *b * *cs; cc = *c__ * *cs + *d__ * *sn; dd = -(*c__) * *sn + *d__ * *cs; /* Compute [ A B ] = [ CS SN ] [ AA BB ] [ C D ] [-SN CS ] [ CC DD ] */ *a = aa * *cs + cc * *sn; *b = bb * *cs + dd * *sn; *c__ = -aa * *sn + cc * *cs; *d__ = -bb * *sn + dd * *cs; temp = (*a + *d__) * .5; *a = temp; *d__ = temp; if (*c__ != 0.) { if (*b != 0.) { if (d_sign(&c_b4, b) == d_sign(&c_b4, c__)) { /* Real eigenvalues: reduce to upper triangular form */ sab = sqrt((abs(*b))); sac = sqrt((abs(*c__))); d__1 = sab * sac; p = d_sign(&d__1, c__); tau = 1. / sqrt((d__1 = *b + *c__, abs(d__1))); *a = temp + p; *d__ = temp - p; *b -= *c__; *c__ = 0.; cs1 = sab * tau; sn1 = sac * tau; temp = *cs * cs1 - *sn * sn1; *sn = *cs * sn1 + *sn * cs1; *cs = temp; } } else { *b = -(*c__); *c__ = 0.; temp = *cs; *cs = -(*sn); *sn = temp; } } } } L10: /* Store eigenvalues in (RT1R,RT1I) and (RT2R,RT2I). */ *rt1r = *a; *rt2r = *d__; if (*c__ == 0.) { *rt1i = 0.; *rt2i = 0.; } else { *rt1i = sqrt((abs(*b))) * sqrt((abs(*c__))); *rt2i = -(*rt1i); } return 0; /* End of DLANV2 */ } /* igraphdlanv2_ */