/* -- translated by f2c (version 20191129).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
/* Table of constant values */
static integer c__13 = 13;
static integer c__15 = 15;
static integer c_n1 = -1;
static integer c__12 = 12;
static integer c__14 = 14;
static integer c__16 = 16;
static logical c_false = FALSE_;
static integer c__1 = 1;
static integer c__3 = 3;
/* > \brief \b DLAQR4 computes the eigenvalues of a Hessenberg matrix, and optionally the matrices from the Sc
hur decomposition.
=========== DOCUMENTATION ===========
Online html documentation available at
http://www.netlib.org/lapack/explore-html/
> \htmlonly
> Download DLAQR4 + dependencies
>
> [TGZ]
>
> [ZIP]
>
> [TXT]
> \endhtmlonly
Definition:
===========
SUBROUTINE DLAQR4( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI,
ILOZ, IHIZ, Z, LDZ, WORK, LWORK, INFO )
INTEGER IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, LWORK, N
LOGICAL WANTT, WANTZ
DOUBLE PRECISION H( LDH, * ), WI( * ), WORK( * ), WR( * ),
$ Z( LDZ, * )
> \par Purpose:
=============
>
> \verbatim
>
> DLAQR4 implements one level of recursion for DLAQR0.
> It is a complete implementation of the small bulge multi-shift
> QR algorithm. It may be called by DLAQR0 and, for large enough
> deflation window size, it may be called by DLAQR3. This
> subroutine is identical to DLAQR0 except that it calls DLAQR2
> instead of DLAQR3.
>
> DLAQR4 computes the eigenvalues of a Hessenberg matrix H
> and, optionally, the matrices T and Z from the Schur decomposition
> H = Z T Z**T, where T is an upper quasi-triangular matrix (the
> Schur form), and Z is the orthogonal matrix of Schur vectors.
>
> Optionally Z may be postmultiplied into an input orthogonal
> matrix Q so that this routine can give the Schur factorization
> of a matrix A which has been reduced to the Hessenberg form H
> by the orthogonal matrix Q: A = Q*H*Q**T = (QZ)*T*(QZ)**T.
> \endverbatim
Arguments:
==========
> \param[in] WANTT
> \verbatim
> WANTT is LOGICAL
> = .TRUE. : the full Schur form T is required;
> = .FALSE.: only eigenvalues are required.
> \endverbatim
>
> \param[in] WANTZ
> \verbatim
> WANTZ is LOGICAL
> = .TRUE. : the matrix of Schur vectors Z is required;
> = .FALSE.: Schur vectors are not required.
> \endverbatim
>
> \param[in] N
> \verbatim
> N is INTEGER
> The order of the matrix H. N .GE. 0.
> \endverbatim
>
> \param[in] ILO
> \verbatim
> ILO is INTEGER
> \endverbatim
>
> \param[in] IHI
> \verbatim
> IHI is INTEGER
> It is assumed that H is already upper triangular in rows
> and columns 1:ILO-1 and IHI+1:N and, if ILO.GT.1,
> H(ILO,ILO-1) is zero. ILO and IHI are normally set by a
> previous call to DGEBAL, and then passed to DGEHRD when the
> matrix output by DGEBAL is reduced to Hessenberg form.
> Otherwise, ILO and IHI should be set to 1 and N,
> respectively. If N.GT.0, then 1.LE.ILO.LE.IHI.LE.N.
> If N = 0, then ILO = 1 and IHI = 0.
> \endverbatim
>
> \param[in,out] H
> \verbatim
> H is DOUBLE PRECISION array, dimension (LDH,N)
> On entry, the upper Hessenberg matrix H.
> On exit, if INFO = 0 and WANTT is .TRUE., then H contains
> the upper quasi-triangular matrix T from the Schur
> decomposition (the Schur form); 2-by-2 diagonal blocks
> (corresponding to complex conjugate pairs of eigenvalues)
> are returned in standard form, with H(i,i) = H(i+1,i+1)
> and H(i+1,i)*H(i,i+1).LT.0. If INFO = 0 and WANTT is
> .FALSE., then the contents of H are unspecified on exit.
> (The output value of H when INFO.GT.0 is given under the
> description of INFO below.)
>
> This subroutine may explicitly set H(i,j) = 0 for i.GT.j and
> j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N.
> \endverbatim
>
> \param[in] LDH
> \verbatim
> LDH is INTEGER
> The leading dimension of the array H. LDH .GE. max(1,N).
> \endverbatim
>
> \param[out] WR
> \verbatim
> WR is DOUBLE PRECISION array, dimension (IHI)
> \endverbatim
>
> \param[out] WI
> \verbatim
> WI is DOUBLE PRECISION array, dimension (IHI)
> The real and imaginary parts, respectively, of the computed
> eigenvalues of H(ILO:IHI,ILO:IHI) are stored in WR(ILO:IHI)
> and WI(ILO:IHI). If two eigenvalues are computed as a
> complex conjugate pair, they are stored in consecutive
> elements of WR and WI, say the i-th and (i+1)th, with
> WI(i) .GT. 0 and WI(i+1) .LT. 0. If WANTT is .TRUE., then
> the eigenvalues are stored in the same order as on the
> diagonal of the Schur form returned in H, with
> WR(i) = H(i,i) and, if H(i:i+1,i:i+1) is a 2-by-2 diagonal
> block, WI(i) = sqrt(-H(i+1,i)*H(i,i+1)) and
> WI(i+1) = -WI(i).
> \endverbatim
>
> \param[in] ILOZ
> \verbatim
> ILOZ is INTEGER
> \endverbatim
>
> \param[in] IHIZ
> \verbatim
> IHIZ is INTEGER
> Specify the rows of Z to which transformations must be
> applied if WANTZ is .TRUE..
> 1 .LE. ILOZ .LE. ILO; IHI .LE. IHIZ .LE. N.
> \endverbatim
>
> \param[in,out] Z
> \verbatim
> Z is DOUBLE PRECISION array, dimension (LDZ,IHI)
> If WANTZ is .FALSE., then Z is not referenced.
> If WANTZ is .TRUE., then Z(ILO:IHI,ILOZ:IHIZ) is
> replaced by Z(ILO:IHI,ILOZ:IHIZ)*U where U is the
> orthogonal Schur factor of H(ILO:IHI,ILO:IHI).
> (The output value of Z when INFO.GT.0 is given under
> the description of INFO below.)
> \endverbatim
>
> \param[in] LDZ
> \verbatim
> LDZ is INTEGER
> The leading dimension of the array Z. if WANTZ is .TRUE.
> then LDZ.GE.MAX(1,IHIZ). Otherwize, LDZ.GE.1.
> \endverbatim
>
> \param[out] WORK
> \verbatim
> WORK is DOUBLE PRECISION array, dimension LWORK
> On exit, if LWORK = -1, WORK(1) returns an estimate of
> the optimal value for LWORK.
> \endverbatim
>
> \param[in] LWORK
> \verbatim
> LWORK is INTEGER
> The dimension of the array WORK. LWORK .GE. max(1,N)
> is sufficient, but LWORK typically as large as 6*N may
> be required for optimal performance. A workspace query
> to determine the optimal workspace size is recommended.
>
> If LWORK = -1, then DLAQR4 does a workspace query.
> In this case, DLAQR4 checks the input parameters and
> estimates the optimal workspace size for the given
> values of N, ILO and IHI. The estimate is returned
> in WORK(1). No error message related to LWORK is
> issued by XERBLA. Neither H nor Z are accessed.
> \endverbatim
>
> \param[out] INFO
> \verbatim
> INFO is INTEGER
> = 0: successful exit
> .GT. 0: if INFO = i, DLAQR4 failed to compute all of
> the eigenvalues. Elements 1:ilo-1 and i+1:n of WR
> and WI contain those eigenvalues which have been
> successfully computed. (Failures are rare.)
>
> If INFO .GT. 0 and WANT is .FALSE., then on exit,
> the remaining unconverged eigenvalues are the eigen-
> values of the upper Hessenberg matrix rows and
> columns ILO through INFO of the final, output
> value of H.
>
> If INFO .GT. 0 and WANTT is .TRUE., then on exit
>
> (*) (initial value of H)*U = U*(final value of H)
>
> where U is a orthogonal matrix. The final
> value of H is upper Hessenberg and triangular in
> rows and columns INFO+1 through IHI.
>
> If INFO .GT. 0 and WANTZ is .TRUE., then on exit
>
> (final value of Z(ILO:IHI,ILOZ:IHIZ)
> = (initial value of Z(ILO:IHI,ILOZ:IHIZ)*U
>
> where U is the orthogonal matrix in (*) (regard-
> less of the value of WANTT.)
>
> If INFO .GT. 0 and WANTZ is .FALSE., then Z is not
> accessed.
> \endverbatim
Authors:
========
> \author Univ. of Tennessee
> \author Univ. of California Berkeley
> \author Univ. of Colorado Denver
> \author NAG Ltd.
> \date September 2012
> \ingroup doubleOTHERauxiliary
> \par Contributors:
==================
>
> Karen Braman and Ralph Byers, Department of Mathematics,
> University of Kansas, USA
> \par References:
================
>
> K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
> Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
> Performance, SIAM Journal of Matrix Analysis, volume 23, pages
> 929--947, 2002.
> \n
> K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
> Algorithm Part II: Aggressive Early Deflation, SIAM Journal
> of Matrix Analysis, volume 23, pages 948--973, 2002.
>
=====================================================================
Subroutine */ int igraphdlaqr4_(logical *wantt, logical *wantz, integer *n,
integer *ilo, integer *ihi, doublereal *h__, integer *ldh, doublereal
*wr, doublereal *wi, integer *iloz, integer *ihiz, doublereal *z__,
integer *ldz, doublereal *work, integer *lwork, integer *info)
{
/* System generated locals */
integer h_dim1, h_offset, z_dim1, z_offset, i__1, i__2, i__3, i__4, i__5;
doublereal d__1, d__2, d__3, d__4;
/* Local variables */
integer i__, k;
doublereal aa, bb, cc, dd;
integer ld;
doublereal cs;
integer nh, it, ks, kt;
doublereal sn;
integer ku, kv, ls, ns;
doublereal ss;
integer nw, inf, kdu, nho, nve, kwh, nsr, nwr, kwv, ndec, ndfl, kbot,
nmin;
doublereal swap;
integer ktop;
doublereal zdum[1] /* was [1][1] */;
integer kacc22, itmax, nsmax, nwmax, kwtop;
extern /* Subroutine */ int igraphdlaqr2_(logical *, logical *, integer *,
integer *, integer *, integer *, doublereal *, integer *, integer
*, integer *, doublereal *, integer *, integer *, integer *,
doublereal *, doublereal *, doublereal *, integer *, integer *,
doublereal *, integer *, integer *, doublereal *, integer *,
doublereal *, integer *), igraphdlanv2_(doublereal *, doublereal *,
doublereal *, doublereal *, doublereal *, doublereal *,
doublereal *, doublereal *, doublereal *, doublereal *), igraphdlaqr5_(
logical *, logical *, integer *, integer *, integer *, integer *,
integer *, doublereal *, doublereal *, doublereal *, integer *,
integer *, integer *, doublereal *, integer *, doublereal *,
integer *, doublereal *, integer *, integer *, doublereal *,
integer *, integer *, doublereal *, integer *);
integer nibble;
extern /* Subroutine */ int igraphdlahqr_(logical *, logical *, integer *,
integer *, integer *, doublereal *, integer *, doublereal *,
doublereal *, integer *, integer *, doublereal *, integer *,
integer *), igraphdlacpy_(char *, integer *, integer *, doublereal *,
integer *, doublereal *, integer *);
extern integer igraphilaenv_(integer *, char *, char *, integer *, integer *,
integer *, integer *, ftnlen, ftnlen);
char jbcmpz[2];
integer nwupbd;
logical sorted;
integer lwkopt;
/* -- LAPACK auxiliary routine (version 3.4.2) --
-- LAPACK is a software package provided by Univ. of Tennessee, --
-- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
September 2012
================================================================
==== Matrices of order NTINY or smaller must be processed by
. DLAHQR because of insufficient subdiagonal scratch space.
. (This is a hard limit.) ====
==== Exceptional deflation windows: try to cure rare
. slow convergence by varying the size of the
. deflation window after KEXNW iterations. ====
==== Exceptional shifts: try to cure rare slow convergence
. with ad-hoc exceptional shifts every KEXSH iterations.
. ====
==== The constants WILK1 and WILK2 are used to form the
. exceptional shifts. ====
Parameter adjustments */
h_dim1 = *ldh;
h_offset = 1 + h_dim1;
h__ -= h_offset;
--wr;
--wi;
z_dim1 = *ldz;
z_offset = 1 + z_dim1;
z__ -= z_offset;
--work;
/* Function Body */
*info = 0;
/* ==== Quick return for N = 0: nothing to do. ==== */
if (*n == 0) {
work[1] = 1.;
return 0;
}
if (*n <= 11) {
/* ==== Tiny matrices must use DLAHQR. ==== */
lwkopt = 1;
if (*lwork != -1) {
igraphdlahqr_(wantt, wantz, n, ilo, ihi, &h__[h_offset], ldh, &wr[1], &
wi[1], iloz, ihiz, &z__[z_offset], ldz, info);
}
} else {
/* ==== Use small bulge multi-shift QR with aggressive early
. deflation on larger-than-tiny matrices. ====
==== Hope for the best. ==== */
*info = 0;
/* ==== Set up job flags for ILAENV. ==== */
if (*wantt) {
*(unsigned char *)jbcmpz = 'S';
} else {
*(unsigned char *)jbcmpz = 'E';
}
if (*wantz) {
*(unsigned char *)&jbcmpz[1] = 'V';
} else {
*(unsigned char *)&jbcmpz[1] = 'N';
}
/* ==== NWR = recommended deflation window size. At this
. point, N .GT. NTINY = 11, so there is enough
. subdiagonal workspace for NWR.GE.2 as required.
. (In fact, there is enough subdiagonal space for
. NWR.GE.3.) ==== */
nwr = igraphilaenv_(&c__13, "DLAQR4", jbcmpz, n, ilo, ihi, lwork, (ftnlen)6,
(ftnlen)2);
nwr = max(2,nwr);
/* Computing MIN */
i__1 = *ihi - *ilo + 1, i__2 = (*n - 1) / 3, i__1 = min(i__1,i__2);
nwr = min(i__1,nwr);
/* ==== NSR = recommended number of simultaneous shifts.
. At this point N .GT. NTINY = 11, so there is at
. enough subdiagonal workspace for NSR to be even
. and greater than or equal to two as required. ==== */
nsr = igraphilaenv_(&c__15, "DLAQR4", jbcmpz, n, ilo, ihi, lwork, (ftnlen)6,
(ftnlen)2);
/* Computing MIN */
i__1 = nsr, i__2 = (*n + 6) / 9, i__1 = min(i__1,i__2), i__2 = *ihi -
*ilo;
nsr = min(i__1,i__2);
/* Computing MAX */
i__1 = 2, i__2 = nsr - nsr % 2;
nsr = max(i__1,i__2);
/* ==== Estimate optimal workspace ====
==== Workspace query call to DLAQR2 ==== */
i__1 = nwr + 1;
igraphdlaqr2_(wantt, wantz, n, ilo, ihi, &i__1, &h__[h_offset], ldh, iloz,
ihiz, &z__[z_offset], ldz, &ls, &ld, &wr[1], &wi[1], &h__[
h_offset], ldh, n, &h__[h_offset], ldh, n, &h__[h_offset],
ldh, &work[1], &c_n1);
/* ==== Optimal workspace = MAX(DLAQR5, DLAQR2) ====
Computing MAX */
i__1 = nsr * 3 / 2, i__2 = (integer) work[1];
lwkopt = max(i__1,i__2);
/* ==== Quick return in case of workspace query. ==== */
if (*lwork == -1) {
work[1] = (doublereal) lwkopt;
return 0;
}
/* ==== DLAHQR/DLAQR0 crossover point ==== */
nmin = igraphilaenv_(&c__12, "DLAQR4", jbcmpz, n, ilo, ihi, lwork, (ftnlen)
6, (ftnlen)2);
nmin = max(11,nmin);
/* ==== Nibble crossover point ==== */
nibble = igraphilaenv_(&c__14, "DLAQR4", jbcmpz, n, ilo, ihi, lwork, (
ftnlen)6, (ftnlen)2);
nibble = max(0,nibble);
/* ==== Accumulate reflections during ttswp? Use block
. 2-by-2 structure during matrix-matrix multiply? ==== */
kacc22 = igraphilaenv_(&c__16, "DLAQR4", jbcmpz, n, ilo, ihi, lwork, (
ftnlen)6, (ftnlen)2);
kacc22 = max(0,kacc22);
kacc22 = min(2,kacc22);
/* ==== NWMAX = the largest possible deflation window for
. which there is sufficient workspace. ====
Computing MIN */
i__1 = (*n - 1) / 3, i__2 = *lwork / 2;
nwmax = min(i__1,i__2);
nw = nwmax;
/* ==== NSMAX = the Largest number of simultaneous shifts
. for which there is sufficient workspace. ====
Computing MIN */
i__1 = (*n + 6) / 9, i__2 = (*lwork << 1) / 3;
nsmax = min(i__1,i__2);
nsmax -= nsmax % 2;
/* ==== NDFL: an iteration count restarted at deflation. ==== */
ndfl = 1;
/* ==== ITMAX = iteration limit ====
Computing MAX */
i__1 = 10, i__2 = *ihi - *ilo + 1;
itmax = max(i__1,i__2) * 30;
/* ==== Last row and column in the active block ==== */
kbot = *ihi;
/* ==== Main Loop ==== */
i__1 = itmax;
for (it = 1; it <= i__1; ++it) {
/* ==== Done when KBOT falls below ILO ==== */
if (kbot < *ilo) {
goto L90;
}
/* ==== Locate active block ==== */
i__2 = *ilo + 1;
for (k = kbot; k >= i__2; --k) {
if (h__[k + (k - 1) * h_dim1] == 0.) {
goto L20;
}
/* L10: */
}
k = *ilo;
L20:
ktop = k;
/* ==== Select deflation window size:
. Typical Case:
. If possible and advisable, nibble the entire
. active block. If not, use size MIN(NWR,NWMAX)
. or MIN(NWR+1,NWMAX) depending upon which has
. the smaller corresponding subdiagonal entry
. (a heuristic).
.
. Exceptional Case:
. If there have been no deflations in KEXNW or
. more iterations, then vary the deflation window
. size. At first, because, larger windows are,
. in general, more powerful than smaller ones,
. rapidly increase the window to the maximum possible.
. Then, gradually reduce the window size. ==== */
nh = kbot - ktop + 1;
nwupbd = min(nh,nwmax);
if (ndfl < 5) {
nw = min(nwupbd,nwr);
} else {
/* Computing MIN */
i__2 = nwupbd, i__3 = nw << 1;
nw = min(i__2,i__3);
}
if (nw < nwmax) {
if (nw >= nh - 1) {
nw = nh;
} else {
kwtop = kbot - nw + 1;
if ((d__1 = h__[kwtop + (kwtop - 1) * h_dim1], abs(d__1))
> (d__2 = h__[kwtop - 1 + (kwtop - 2) * h_dim1],
abs(d__2))) {
++nw;
}
}
}
if (ndfl < 5) {
ndec = -1;
} else if (ndec >= 0 || nw >= nwupbd) {
++ndec;
if (nw - ndec < 2) {
ndec = 0;
}
nw -= ndec;
}
/* ==== Aggressive early deflation:
. split workspace under the subdiagonal into
. - an nw-by-nw work array V in the lower
. left-hand-corner,
. - an NW-by-at-least-NW-but-more-is-better
. (NW-by-NHO) horizontal work array along
. the bottom edge,
. - an at-least-NW-but-more-is-better (NHV-by-NW)
. vertical work array along the left-hand-edge.
. ==== */
kv = *n - nw + 1;
kt = nw + 1;
nho = *n - nw - 1 - kt + 1;
kwv = nw + 2;
nve = *n - nw - kwv + 1;
/* ==== Aggressive early deflation ==== */
igraphdlaqr2_(wantt, wantz, n, &ktop, &kbot, &nw, &h__[h_offset], ldh,
iloz, ihiz, &z__[z_offset], ldz, &ls, &ld, &wr[1], &wi[1],
&h__[kv + h_dim1], ldh, &nho, &h__[kv + kt * h_dim1],
ldh, &nve, &h__[kwv + h_dim1], ldh, &work[1], lwork);
/* ==== Adjust KBOT accounting for new deflations. ==== */
kbot -= ld;
/* ==== KS points to the shifts. ==== */
ks = kbot - ls + 1;
/* ==== Skip an expensive QR sweep if there is a (partly
. heuristic) reason to expect that many eigenvalues
. will deflate without it. Here, the QR sweep is
. skipped if many eigenvalues have just been deflated
. or if the remaining active block is small. */
if (ld == 0 || ld * 100 <= nw * nibble && kbot - ktop + 1 > min(
nmin,nwmax)) {
/* ==== NS = nominal number of simultaneous shifts.
. This may be lowered (slightly) if DLAQR2
. did not provide that many shifts. ====
Computing MIN
Computing MAX */
i__4 = 2, i__5 = kbot - ktop;
i__2 = min(nsmax,nsr), i__3 = max(i__4,i__5);
ns = min(i__2,i__3);
ns -= ns % 2;
/* ==== If there have been no deflations
. in a multiple of KEXSH iterations,
. then try exceptional shifts.
. Otherwise use shifts provided by
. DLAQR2 above or from the eigenvalues
. of a trailing principal submatrix. ==== */
if (ndfl % 6 == 0) {
ks = kbot - ns + 1;
/* Computing MAX */
i__3 = ks + 1, i__4 = ktop + 2;
i__2 = max(i__3,i__4);
for (i__ = kbot; i__ >= i__2; i__ += -2) {
ss = (d__1 = h__[i__ + (i__ - 1) * h_dim1], abs(d__1))
+ (d__2 = h__[i__ - 1 + (i__ - 2) * h_dim1],
abs(d__2));
aa = ss * .75 + h__[i__ + i__ * h_dim1];
bb = ss;
cc = ss * -.4375;
dd = aa;
igraphdlanv2_(&aa, &bb, &cc, &dd, &wr[i__ - 1], &wi[i__ - 1]
, &wr[i__], &wi[i__], &cs, &sn);
/* L30: */
}
if (ks == ktop) {
wr[ks + 1] = h__[ks + 1 + (ks + 1) * h_dim1];
wi[ks + 1] = 0.;
wr[ks] = wr[ks + 1];
wi[ks] = wi[ks + 1];
}
} else {
/* ==== Got NS/2 or fewer shifts? Use DLAHQR
. on a trailing principal submatrix to
. get more. (Since NS.LE.NSMAX.LE.(N+6)/9,
. there is enough space below the subdiagonal
. to fit an NS-by-NS scratch array.) ==== */
if (kbot - ks + 1 <= ns / 2) {
ks = kbot - ns + 1;
kt = *n - ns + 1;
igraphdlacpy_("A", &ns, &ns, &h__[ks + ks * h_dim1], ldh, &
h__[kt + h_dim1], ldh);
igraphdlahqr_(&c_false, &c_false, &ns, &c__1, &ns, &h__[kt
+ h_dim1], ldh, &wr[ks], &wi[ks], &c__1, &
c__1, zdum, &c__1, &inf);
ks += inf;
/* ==== In case of a rare QR failure use
. eigenvalues of the trailing 2-by-2
. principal submatrix. ==== */
if (ks >= kbot) {
aa = h__[kbot - 1 + (kbot - 1) * h_dim1];
cc = h__[kbot + (kbot - 1) * h_dim1];
bb = h__[kbot - 1 + kbot * h_dim1];
dd = h__[kbot + kbot * h_dim1];
igraphdlanv2_(&aa, &bb, &cc, &dd, &wr[kbot - 1], &wi[
kbot - 1], &wr[kbot], &wi[kbot], &cs, &sn)
;
ks = kbot - 1;
}
}
if (kbot - ks + 1 > ns) {
/* ==== Sort the shifts (Helps a little)
. Bubble sort keeps complex conjugate
. pairs together. ==== */
sorted = FALSE_;
i__2 = ks + 1;
for (k = kbot; k >= i__2; --k) {
if (sorted) {
goto L60;
}
sorted = TRUE_;
i__3 = k - 1;
for (i__ = ks; i__ <= i__3; ++i__) {
if ((d__1 = wr[i__], abs(d__1)) + (d__2 = wi[
i__], abs(d__2)) < (d__3 = wr[i__ + 1]
, abs(d__3)) + (d__4 = wi[i__ + 1],
abs(d__4))) {
sorted = FALSE_;
swap = wr[i__];
wr[i__] = wr[i__ + 1];
wr[i__ + 1] = swap;
swap = wi[i__];
wi[i__] = wi[i__ + 1];
wi[i__ + 1] = swap;
}
/* L40: */
}
/* L50: */
}
L60:
;
}
/* ==== Shuffle shifts into pairs of real shifts
. and pairs of complex conjugate shifts
. assuming complex conjugate shifts are
. already adjacent to one another. (Yes,
. they are.) ==== */
i__2 = ks + 2;
for (i__ = kbot; i__ >= i__2; i__ += -2) {
if (wi[i__] != -wi[i__ - 1]) {
swap = wr[i__];
wr[i__] = wr[i__ - 1];
wr[i__ - 1] = wr[i__ - 2];
wr[i__ - 2] = swap;
swap = wi[i__];
wi[i__] = wi[i__ - 1];
wi[i__ - 1] = wi[i__ - 2];
wi[i__ - 2] = swap;
}
/* L70: */
}
}
/* ==== If there are only two shifts and both are
. real, then use only one. ==== */
if (kbot - ks + 1 == 2) {
if (wi[kbot] == 0.) {
if ((d__1 = wr[kbot] - h__[kbot + kbot * h_dim1], abs(
d__1)) < (d__2 = wr[kbot - 1] - h__[kbot +
kbot * h_dim1], abs(d__2))) {
wr[kbot - 1] = wr[kbot];
} else {
wr[kbot] = wr[kbot - 1];
}
}
}
/* ==== Use up to NS of the the smallest magnatiude
. shifts. If there aren't NS shifts available,
. then use them all, possibly dropping one to
. make the number of shifts even. ====
Computing MIN */
i__2 = ns, i__3 = kbot - ks + 1;
ns = min(i__2,i__3);
ns -= ns % 2;
ks = kbot - ns + 1;
/* ==== Small-bulge multi-shift QR sweep:
. split workspace under the subdiagonal into
. - a KDU-by-KDU work array U in the lower
. left-hand-corner,
. - a KDU-by-at-least-KDU-but-more-is-better
. (KDU-by-NHo) horizontal work array WH along
. the bottom edge,
. - and an at-least-KDU-but-more-is-better-by-KDU
. (NVE-by-KDU) vertical work WV arrow along
. the left-hand-edge. ==== */
kdu = ns * 3 - 3;
ku = *n - kdu + 1;
kwh = kdu + 1;
nho = *n - kdu - 3 - (kdu + 1) + 1;
kwv = kdu + 4;
nve = *n - kdu - kwv + 1;
/* ==== Small-bulge multi-shift QR sweep ==== */
igraphdlaqr5_(wantt, wantz, &kacc22, n, &ktop, &kbot, &ns, &wr[ks],
&wi[ks], &h__[h_offset], ldh, iloz, ihiz, &z__[
z_offset], ldz, &work[1], &c__3, &h__[ku + h_dim1],
ldh, &nve, &h__[kwv + h_dim1], ldh, &nho, &h__[ku +
kwh * h_dim1], ldh);
}
/* ==== Note progress (or the lack of it). ==== */
if (ld > 0) {
ndfl = 1;
} else {
++ndfl;
}
/* ==== End of main loop ====
L80: */
}
/* ==== Iteration limit exceeded. Set INFO to show where
. the problem occurred and exit. ==== */
*info = kbot;
L90:
;
}
/* ==== Return the optimal value of LWORK. ==== */
work[1] = (doublereal) lwkopt;
/* ==== End of DLAQR4 ==== */
return 0;
} /* igraphdlaqr4_ */