/* -- translated by f2c (version 20191129). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Table of constant values */ static integer c__13 = 13; static integer c__15 = 15; static integer c_n1 = -1; static integer c__12 = 12; static integer c__14 = 14; static integer c__16 = 16; static logical c_false = FALSE_; static integer c__1 = 1; static integer c__3 = 3; /* > \brief \b DLAQR4 computes the eigenvalues of a Hessenberg matrix, and optionally the matrices from the Sc hur decomposition. =========== DOCUMENTATION =========== Online html documentation available at http://www.netlib.org/lapack/explore-html/ > \htmlonly > Download DLAQR4 + dependencies > > [TGZ] > > [ZIP] > > [TXT] > \endhtmlonly Definition: =========== SUBROUTINE DLAQR4( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI, ILOZ, IHIZ, Z, LDZ, WORK, LWORK, INFO ) INTEGER IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, LWORK, N LOGICAL WANTT, WANTZ DOUBLE PRECISION H( LDH, * ), WI( * ), WORK( * ), WR( * ), $ Z( LDZ, * ) > \par Purpose: ============= > > \verbatim > > DLAQR4 implements one level of recursion for DLAQR0. > It is a complete implementation of the small bulge multi-shift > QR algorithm. It may be called by DLAQR0 and, for large enough > deflation window size, it may be called by DLAQR3. This > subroutine is identical to DLAQR0 except that it calls DLAQR2 > instead of DLAQR3. > > DLAQR4 computes the eigenvalues of a Hessenberg matrix H > and, optionally, the matrices T and Z from the Schur decomposition > H = Z T Z**T, where T is an upper quasi-triangular matrix (the > Schur form), and Z is the orthogonal matrix of Schur vectors. > > Optionally Z may be postmultiplied into an input orthogonal > matrix Q so that this routine can give the Schur factorization > of a matrix A which has been reduced to the Hessenberg form H > by the orthogonal matrix Q: A = Q*H*Q**T = (QZ)*T*(QZ)**T. > \endverbatim Arguments: ========== > \param[in] WANTT > \verbatim > WANTT is LOGICAL > = .TRUE. : the full Schur form T is required; > = .FALSE.: only eigenvalues are required. > \endverbatim > > \param[in] WANTZ > \verbatim > WANTZ is LOGICAL > = .TRUE. : the matrix of Schur vectors Z is required; > = .FALSE.: Schur vectors are not required. > \endverbatim > > \param[in] N > \verbatim > N is INTEGER > The order of the matrix H. N .GE. 0. > \endverbatim > > \param[in] ILO > \verbatim > ILO is INTEGER > \endverbatim > > \param[in] IHI > \verbatim > IHI is INTEGER > It is assumed that H is already upper triangular in rows > and columns 1:ILO-1 and IHI+1:N and, if ILO.GT.1, > H(ILO,ILO-1) is zero. ILO and IHI are normally set by a > previous call to DGEBAL, and then passed to DGEHRD when the > matrix output by DGEBAL is reduced to Hessenberg form. > Otherwise, ILO and IHI should be set to 1 and N, > respectively. If N.GT.0, then 1.LE.ILO.LE.IHI.LE.N. > If N = 0, then ILO = 1 and IHI = 0. > \endverbatim > > \param[in,out] H > \verbatim > H is DOUBLE PRECISION array, dimension (LDH,N) > On entry, the upper Hessenberg matrix H. > On exit, if INFO = 0 and WANTT is .TRUE., then H contains > the upper quasi-triangular matrix T from the Schur > decomposition (the Schur form); 2-by-2 diagonal blocks > (corresponding to complex conjugate pairs of eigenvalues) > are returned in standard form, with H(i,i) = H(i+1,i+1) > and H(i+1,i)*H(i,i+1).LT.0. If INFO = 0 and WANTT is > .FALSE., then the contents of H are unspecified on exit. > (The output value of H when INFO.GT.0 is given under the > description of INFO below.) > > This subroutine may explicitly set H(i,j) = 0 for i.GT.j and > j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N. > \endverbatim > > \param[in] LDH > \verbatim > LDH is INTEGER > The leading dimension of the array H. LDH .GE. max(1,N). > \endverbatim > > \param[out] WR > \verbatim > WR is DOUBLE PRECISION array, dimension (IHI) > \endverbatim > > \param[out] WI > \verbatim > WI is DOUBLE PRECISION array, dimension (IHI) > The real and imaginary parts, respectively, of the computed > eigenvalues of H(ILO:IHI,ILO:IHI) are stored in WR(ILO:IHI) > and WI(ILO:IHI). If two eigenvalues are computed as a > complex conjugate pair, they are stored in consecutive > elements of WR and WI, say the i-th and (i+1)th, with > WI(i) .GT. 0 and WI(i+1) .LT. 0. If WANTT is .TRUE., then > the eigenvalues are stored in the same order as on the > diagonal of the Schur form returned in H, with > WR(i) = H(i,i) and, if H(i:i+1,i:i+1) is a 2-by-2 diagonal > block, WI(i) = sqrt(-H(i+1,i)*H(i,i+1)) and > WI(i+1) = -WI(i). > \endverbatim > > \param[in] ILOZ > \verbatim > ILOZ is INTEGER > \endverbatim > > \param[in] IHIZ > \verbatim > IHIZ is INTEGER > Specify the rows of Z to which transformations must be > applied if WANTZ is .TRUE.. > 1 .LE. ILOZ .LE. ILO; IHI .LE. IHIZ .LE. N. > \endverbatim > > \param[in,out] Z > \verbatim > Z is DOUBLE PRECISION array, dimension (LDZ,IHI) > If WANTZ is .FALSE., then Z is not referenced. > If WANTZ is .TRUE., then Z(ILO:IHI,ILOZ:IHIZ) is > replaced by Z(ILO:IHI,ILOZ:IHIZ)*U where U is the > orthogonal Schur factor of H(ILO:IHI,ILO:IHI). > (The output value of Z when INFO.GT.0 is given under > the description of INFO below.) > \endverbatim > > \param[in] LDZ > \verbatim > LDZ is INTEGER > The leading dimension of the array Z. if WANTZ is .TRUE. > then LDZ.GE.MAX(1,IHIZ). Otherwize, LDZ.GE.1. > \endverbatim > > \param[out] WORK > \verbatim > WORK is DOUBLE PRECISION array, dimension LWORK > On exit, if LWORK = -1, WORK(1) returns an estimate of > the optimal value for LWORK. > \endverbatim > > \param[in] LWORK > \verbatim > LWORK is INTEGER > The dimension of the array WORK. LWORK .GE. max(1,N) > is sufficient, but LWORK typically as large as 6*N may > be required for optimal performance. A workspace query > to determine the optimal workspace size is recommended. > > If LWORK = -1, then DLAQR4 does a workspace query. > In this case, DLAQR4 checks the input parameters and > estimates the optimal workspace size for the given > values of N, ILO and IHI. The estimate is returned > in WORK(1). No error message related to LWORK is > issued by XERBLA. Neither H nor Z are accessed. > \endverbatim > > \param[out] INFO > \verbatim > INFO is INTEGER > = 0: successful exit > .GT. 0: if INFO = i, DLAQR4 failed to compute all of > the eigenvalues. Elements 1:ilo-1 and i+1:n of WR > and WI contain those eigenvalues which have been > successfully computed. (Failures are rare.) > > If INFO .GT. 0 and WANT is .FALSE., then on exit, > the remaining unconverged eigenvalues are the eigen- > values of the upper Hessenberg matrix rows and > columns ILO through INFO of the final, output > value of H. > > If INFO .GT. 0 and WANTT is .TRUE., then on exit > > (*) (initial value of H)*U = U*(final value of H) > > where U is a orthogonal matrix. The final > value of H is upper Hessenberg and triangular in > rows and columns INFO+1 through IHI. > > If INFO .GT. 0 and WANTZ is .TRUE., then on exit > > (final value of Z(ILO:IHI,ILOZ:IHIZ) > = (initial value of Z(ILO:IHI,ILOZ:IHIZ)*U > > where U is the orthogonal matrix in (*) (regard- > less of the value of WANTT.) > > If INFO .GT. 0 and WANTZ is .FALSE., then Z is not > accessed. > \endverbatim Authors: ======== > \author Univ. of Tennessee > \author Univ. of California Berkeley > \author Univ. of Colorado Denver > \author NAG Ltd. > \date September 2012 > \ingroup doubleOTHERauxiliary > \par Contributors: ================== > > Karen Braman and Ralph Byers, Department of Mathematics, > University of Kansas, USA > \par References: ================ > > K. Braman, R. Byers and R. Mathias, The Multi-Shift QR > Algorithm Part I: Maintaining Well Focused Shifts, and Level 3 > Performance, SIAM Journal of Matrix Analysis, volume 23, pages > 929--947, 2002. > \n > K. Braman, R. Byers and R. Mathias, The Multi-Shift QR > Algorithm Part II: Aggressive Early Deflation, SIAM Journal > of Matrix Analysis, volume 23, pages 948--973, 2002. > ===================================================================== Subroutine */ int igraphdlaqr4_(logical *wantt, logical *wantz, integer *n, integer *ilo, integer *ihi, doublereal *h__, integer *ldh, doublereal *wr, doublereal *wi, integer *iloz, integer *ihiz, doublereal *z__, integer *ldz, doublereal *work, integer *lwork, integer *info) { /* System generated locals */ integer h_dim1, h_offset, z_dim1, z_offset, i__1, i__2, i__3, i__4, i__5; doublereal d__1, d__2, d__3, d__4; /* Local variables */ integer i__, k; doublereal aa, bb, cc, dd; integer ld; doublereal cs; integer nh, it, ks, kt; doublereal sn; integer ku, kv, ls, ns; doublereal ss; integer nw, inf, kdu, nho, nve, kwh, nsr, nwr, kwv, ndec, ndfl, kbot, nmin; doublereal swap; integer ktop; doublereal zdum[1] /* was [1][1] */; integer kacc22, itmax, nsmax, nwmax, kwtop; extern /* Subroutine */ int igraphdlaqr2_(logical *, logical *, integer *, integer *, integer *, integer *, doublereal *, integer *, integer *, integer *, doublereal *, integer *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *, integer *, doublereal *, integer *, integer *, doublereal *, integer *, doublereal *, integer *), igraphdlanv2_(doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *), igraphdlaqr5_( logical *, logical *, integer *, integer *, integer *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, integer *, doublereal *, integer *, integer *, doublereal *, integer *); integer nibble; extern /* Subroutine */ int igraphdlahqr_(logical *, logical *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *, doublereal *, integer *, integer *), igraphdlacpy_(char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *); extern integer igraphilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *, ftnlen, ftnlen); char jbcmpz[2]; integer nwupbd; logical sorted; integer lwkopt; /* -- LAPACK auxiliary routine (version 3.4.2) -- -- LAPACK is a software package provided by Univ. of Tennessee, -- -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- September 2012 ================================================================ ==== Matrices of order NTINY or smaller must be processed by . DLAHQR because of insufficient subdiagonal scratch space. . (This is a hard limit.) ==== ==== Exceptional deflation windows: try to cure rare . slow convergence by varying the size of the . deflation window after KEXNW iterations. ==== ==== Exceptional shifts: try to cure rare slow convergence . with ad-hoc exceptional shifts every KEXSH iterations. . ==== ==== The constants WILK1 and WILK2 are used to form the . exceptional shifts. ==== Parameter adjustments */ h_dim1 = *ldh; h_offset = 1 + h_dim1; h__ -= h_offset; --wr; --wi; z_dim1 = *ldz; z_offset = 1 + z_dim1; z__ -= z_offset; --work; /* Function Body */ *info = 0; /* ==== Quick return for N = 0: nothing to do. ==== */ if (*n == 0) { work[1] = 1.; return 0; } if (*n <= 11) { /* ==== Tiny matrices must use DLAHQR. ==== */ lwkopt = 1; if (*lwork != -1) { igraphdlahqr_(wantt, wantz, n, ilo, ihi, &h__[h_offset], ldh, &wr[1], & wi[1], iloz, ihiz, &z__[z_offset], ldz, info); } } else { /* ==== Use small bulge multi-shift QR with aggressive early . deflation on larger-than-tiny matrices. ==== ==== Hope for the best. ==== */ *info = 0; /* ==== Set up job flags for ILAENV. ==== */ if (*wantt) { *(unsigned char *)jbcmpz = 'S'; } else { *(unsigned char *)jbcmpz = 'E'; } if (*wantz) { *(unsigned char *)&jbcmpz[1] = 'V'; } else { *(unsigned char *)&jbcmpz[1] = 'N'; } /* ==== NWR = recommended deflation window size. At this . point, N .GT. NTINY = 11, so there is enough . subdiagonal workspace for NWR.GE.2 as required. . (In fact, there is enough subdiagonal space for . NWR.GE.3.) ==== */ nwr = igraphilaenv_(&c__13, "DLAQR4", jbcmpz, n, ilo, ihi, lwork, (ftnlen)6, (ftnlen)2); nwr = max(2,nwr); /* Computing MIN */ i__1 = *ihi - *ilo + 1, i__2 = (*n - 1) / 3, i__1 = min(i__1,i__2); nwr = min(i__1,nwr); /* ==== NSR = recommended number of simultaneous shifts. . At this point N .GT. NTINY = 11, so there is at . enough subdiagonal workspace for NSR to be even . and greater than or equal to two as required. ==== */ nsr = igraphilaenv_(&c__15, "DLAQR4", jbcmpz, n, ilo, ihi, lwork, (ftnlen)6, (ftnlen)2); /* Computing MIN */ i__1 = nsr, i__2 = (*n + 6) / 9, i__1 = min(i__1,i__2), i__2 = *ihi - *ilo; nsr = min(i__1,i__2); /* Computing MAX */ i__1 = 2, i__2 = nsr - nsr % 2; nsr = max(i__1,i__2); /* ==== Estimate optimal workspace ==== ==== Workspace query call to DLAQR2 ==== */ i__1 = nwr + 1; igraphdlaqr2_(wantt, wantz, n, ilo, ihi, &i__1, &h__[h_offset], ldh, iloz, ihiz, &z__[z_offset], ldz, &ls, &ld, &wr[1], &wi[1], &h__[ h_offset], ldh, n, &h__[h_offset], ldh, n, &h__[h_offset], ldh, &work[1], &c_n1); /* ==== Optimal workspace = MAX(DLAQR5, DLAQR2) ==== Computing MAX */ i__1 = nsr * 3 / 2, i__2 = (integer) work[1]; lwkopt = max(i__1,i__2); /* ==== Quick return in case of workspace query. ==== */ if (*lwork == -1) { work[1] = (doublereal) lwkopt; return 0; } /* ==== DLAHQR/DLAQR0 crossover point ==== */ nmin = igraphilaenv_(&c__12, "DLAQR4", jbcmpz, n, ilo, ihi, lwork, (ftnlen) 6, (ftnlen)2); nmin = max(11,nmin); /* ==== Nibble crossover point ==== */ nibble = igraphilaenv_(&c__14, "DLAQR4", jbcmpz, n, ilo, ihi, lwork, ( ftnlen)6, (ftnlen)2); nibble = max(0,nibble); /* ==== Accumulate reflections during ttswp? Use block . 2-by-2 structure during matrix-matrix multiply? ==== */ kacc22 = igraphilaenv_(&c__16, "DLAQR4", jbcmpz, n, ilo, ihi, lwork, ( ftnlen)6, (ftnlen)2); kacc22 = max(0,kacc22); kacc22 = min(2,kacc22); /* ==== NWMAX = the largest possible deflation window for . which there is sufficient workspace. ==== Computing MIN */ i__1 = (*n - 1) / 3, i__2 = *lwork / 2; nwmax = min(i__1,i__2); nw = nwmax; /* ==== NSMAX = the Largest number of simultaneous shifts . for which there is sufficient workspace. ==== Computing MIN */ i__1 = (*n + 6) / 9, i__2 = (*lwork << 1) / 3; nsmax = min(i__1,i__2); nsmax -= nsmax % 2; /* ==== NDFL: an iteration count restarted at deflation. ==== */ ndfl = 1; /* ==== ITMAX = iteration limit ==== Computing MAX */ i__1 = 10, i__2 = *ihi - *ilo + 1; itmax = max(i__1,i__2) * 30; /* ==== Last row and column in the active block ==== */ kbot = *ihi; /* ==== Main Loop ==== */ i__1 = itmax; for (it = 1; it <= i__1; ++it) { /* ==== Done when KBOT falls below ILO ==== */ if (kbot < *ilo) { goto L90; } /* ==== Locate active block ==== */ i__2 = *ilo + 1; for (k = kbot; k >= i__2; --k) { if (h__[k + (k - 1) * h_dim1] == 0.) { goto L20; } /* L10: */ } k = *ilo; L20: ktop = k; /* ==== Select deflation window size: . Typical Case: . If possible and advisable, nibble the entire . active block. If not, use size MIN(NWR,NWMAX) . or MIN(NWR+1,NWMAX) depending upon which has . the smaller corresponding subdiagonal entry . (a heuristic). . . Exceptional Case: . If there have been no deflations in KEXNW or . more iterations, then vary the deflation window . size. At first, because, larger windows are, . in general, more powerful than smaller ones, . rapidly increase the window to the maximum possible. . Then, gradually reduce the window size. ==== */ nh = kbot - ktop + 1; nwupbd = min(nh,nwmax); if (ndfl < 5) { nw = min(nwupbd,nwr); } else { /* Computing MIN */ i__2 = nwupbd, i__3 = nw << 1; nw = min(i__2,i__3); } if (nw < nwmax) { if (nw >= nh - 1) { nw = nh; } else { kwtop = kbot - nw + 1; if ((d__1 = h__[kwtop + (kwtop - 1) * h_dim1], abs(d__1)) > (d__2 = h__[kwtop - 1 + (kwtop - 2) * h_dim1], abs(d__2))) { ++nw; } } } if (ndfl < 5) { ndec = -1; } else if (ndec >= 0 || nw >= nwupbd) { ++ndec; if (nw - ndec < 2) { ndec = 0; } nw -= ndec; } /* ==== Aggressive early deflation: . split workspace under the subdiagonal into . - an nw-by-nw work array V in the lower . left-hand-corner, . - an NW-by-at-least-NW-but-more-is-better . (NW-by-NHO) horizontal work array along . the bottom edge, . - an at-least-NW-but-more-is-better (NHV-by-NW) . vertical work array along the left-hand-edge. . ==== */ kv = *n - nw + 1; kt = nw + 1; nho = *n - nw - 1 - kt + 1; kwv = nw + 2; nve = *n - nw - kwv + 1; /* ==== Aggressive early deflation ==== */ igraphdlaqr2_(wantt, wantz, n, &ktop, &kbot, &nw, &h__[h_offset], ldh, iloz, ihiz, &z__[z_offset], ldz, &ls, &ld, &wr[1], &wi[1], &h__[kv + h_dim1], ldh, &nho, &h__[kv + kt * h_dim1], ldh, &nve, &h__[kwv + h_dim1], ldh, &work[1], lwork); /* ==== Adjust KBOT accounting for new deflations. ==== */ kbot -= ld; /* ==== KS points to the shifts. ==== */ ks = kbot - ls + 1; /* ==== Skip an expensive QR sweep if there is a (partly . heuristic) reason to expect that many eigenvalues . will deflate without it. Here, the QR sweep is . skipped if many eigenvalues have just been deflated . or if the remaining active block is small. */ if (ld == 0 || ld * 100 <= nw * nibble && kbot - ktop + 1 > min( nmin,nwmax)) { /* ==== NS = nominal number of simultaneous shifts. . This may be lowered (slightly) if DLAQR2 . did not provide that many shifts. ==== Computing MIN Computing MAX */ i__4 = 2, i__5 = kbot - ktop; i__2 = min(nsmax,nsr), i__3 = max(i__4,i__5); ns = min(i__2,i__3); ns -= ns % 2; /* ==== If there have been no deflations . in a multiple of KEXSH iterations, . then try exceptional shifts. . Otherwise use shifts provided by . DLAQR2 above or from the eigenvalues . of a trailing principal submatrix. ==== */ if (ndfl % 6 == 0) { ks = kbot - ns + 1; /* Computing MAX */ i__3 = ks + 1, i__4 = ktop + 2; i__2 = max(i__3,i__4); for (i__ = kbot; i__ >= i__2; i__ += -2) { ss = (d__1 = h__[i__ + (i__ - 1) * h_dim1], abs(d__1)) + (d__2 = h__[i__ - 1 + (i__ - 2) * h_dim1], abs(d__2)); aa = ss * .75 + h__[i__ + i__ * h_dim1]; bb = ss; cc = ss * -.4375; dd = aa; igraphdlanv2_(&aa, &bb, &cc, &dd, &wr[i__ - 1], &wi[i__ - 1] , &wr[i__], &wi[i__], &cs, &sn); /* L30: */ } if (ks == ktop) { wr[ks + 1] = h__[ks + 1 + (ks + 1) * h_dim1]; wi[ks + 1] = 0.; wr[ks] = wr[ks + 1]; wi[ks] = wi[ks + 1]; } } else { /* ==== Got NS/2 or fewer shifts? Use DLAHQR . on a trailing principal submatrix to . get more. (Since NS.LE.NSMAX.LE.(N+6)/9, . there is enough space below the subdiagonal . to fit an NS-by-NS scratch array.) ==== */ if (kbot - ks + 1 <= ns / 2) { ks = kbot - ns + 1; kt = *n - ns + 1; igraphdlacpy_("A", &ns, &ns, &h__[ks + ks * h_dim1], ldh, & h__[kt + h_dim1], ldh); igraphdlahqr_(&c_false, &c_false, &ns, &c__1, &ns, &h__[kt + h_dim1], ldh, &wr[ks], &wi[ks], &c__1, & c__1, zdum, &c__1, &inf); ks += inf; /* ==== In case of a rare QR failure use . eigenvalues of the trailing 2-by-2 . principal submatrix. ==== */ if (ks >= kbot) { aa = h__[kbot - 1 + (kbot - 1) * h_dim1]; cc = h__[kbot + (kbot - 1) * h_dim1]; bb = h__[kbot - 1 + kbot * h_dim1]; dd = h__[kbot + kbot * h_dim1]; igraphdlanv2_(&aa, &bb, &cc, &dd, &wr[kbot - 1], &wi[ kbot - 1], &wr[kbot], &wi[kbot], &cs, &sn) ; ks = kbot - 1; } } if (kbot - ks + 1 > ns) { /* ==== Sort the shifts (Helps a little) . Bubble sort keeps complex conjugate . pairs together. ==== */ sorted = FALSE_; i__2 = ks + 1; for (k = kbot; k >= i__2; --k) { if (sorted) { goto L60; } sorted = TRUE_; i__3 = k - 1; for (i__ = ks; i__ <= i__3; ++i__) { if ((d__1 = wr[i__], abs(d__1)) + (d__2 = wi[ i__], abs(d__2)) < (d__3 = wr[i__ + 1] , abs(d__3)) + (d__4 = wi[i__ + 1], abs(d__4))) { sorted = FALSE_; swap = wr[i__]; wr[i__] = wr[i__ + 1]; wr[i__ + 1] = swap; swap = wi[i__]; wi[i__] = wi[i__ + 1]; wi[i__ + 1] = swap; } /* L40: */ } /* L50: */ } L60: ; } /* ==== Shuffle shifts into pairs of real shifts . and pairs of complex conjugate shifts . assuming complex conjugate shifts are . already adjacent to one another. (Yes, . they are.) ==== */ i__2 = ks + 2; for (i__ = kbot; i__ >= i__2; i__ += -2) { if (wi[i__] != -wi[i__ - 1]) { swap = wr[i__]; wr[i__] = wr[i__ - 1]; wr[i__ - 1] = wr[i__ - 2]; wr[i__ - 2] = swap; swap = wi[i__]; wi[i__] = wi[i__ - 1]; wi[i__ - 1] = wi[i__ - 2]; wi[i__ - 2] = swap; } /* L70: */ } } /* ==== If there are only two shifts and both are . real, then use only one. ==== */ if (kbot - ks + 1 == 2) { if (wi[kbot] == 0.) { if ((d__1 = wr[kbot] - h__[kbot + kbot * h_dim1], abs( d__1)) < (d__2 = wr[kbot - 1] - h__[kbot + kbot * h_dim1], abs(d__2))) { wr[kbot - 1] = wr[kbot]; } else { wr[kbot] = wr[kbot - 1]; } } } /* ==== Use up to NS of the the smallest magnatiude . shifts. If there aren't NS shifts available, . then use them all, possibly dropping one to . make the number of shifts even. ==== Computing MIN */ i__2 = ns, i__3 = kbot - ks + 1; ns = min(i__2,i__3); ns -= ns % 2; ks = kbot - ns + 1; /* ==== Small-bulge multi-shift QR sweep: . split workspace under the subdiagonal into . - a KDU-by-KDU work array U in the lower . left-hand-corner, . - a KDU-by-at-least-KDU-but-more-is-better . (KDU-by-NHo) horizontal work array WH along . the bottom edge, . - and an at-least-KDU-but-more-is-better-by-KDU . (NVE-by-KDU) vertical work WV arrow along . the left-hand-edge. ==== */ kdu = ns * 3 - 3; ku = *n - kdu + 1; kwh = kdu + 1; nho = *n - kdu - 3 - (kdu + 1) + 1; kwv = kdu + 4; nve = *n - kdu - kwv + 1; /* ==== Small-bulge multi-shift QR sweep ==== */ igraphdlaqr5_(wantt, wantz, &kacc22, n, &ktop, &kbot, &ns, &wr[ks], &wi[ks], &h__[h_offset], ldh, iloz, ihiz, &z__[ z_offset], ldz, &work[1], &c__3, &h__[ku + h_dim1], ldh, &nve, &h__[kwv + h_dim1], ldh, &nho, &h__[ku + kwh * h_dim1], ldh); } /* ==== Note progress (or the lack of it). ==== */ if (ld > 0) { ndfl = 1; } else { ++ndfl; } /* ==== End of main loop ==== L80: */ } /* ==== Iteration limit exceeded. Set INFO to show where . the problem occurred and exit. ==== */ *info = kbot; L90: ; } /* ==== Return the optimal value of LWORK. ==== */ work[1] = (doublereal) lwkopt; /* ==== End of DLAQR4 ==== */ return 0; } /* igraphdlaqr4_ */