/* -- translated by f2c (version 20191129). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Table of constant values */ static doublereal c_b7 = 0.; static doublereal c_b8 = 1.; static integer c__3 = 3; static integer c__1 = 1; static integer c__2 = 2; /* > \brief \b DLAQR5 performs a single small-bulge multi-shift QR sweep. =========== DOCUMENTATION =========== Online html documentation available at http://www.netlib.org/lapack/explore-html/ > \htmlonly > Download DLAQR5 + dependencies > > [TGZ] > > [ZIP] > > [TXT] > \endhtmlonly Definition: =========== SUBROUTINE DLAQR5( WANTT, WANTZ, KACC22, N, KTOP, KBOT, NSHFTS, SR, SI, H, LDH, ILOZ, IHIZ, Z, LDZ, V, LDV, U, LDU, NV, WV, LDWV, NH, WH, LDWH ) INTEGER IHIZ, ILOZ, KACC22, KBOT, KTOP, LDH, LDU, LDV, $ LDWH, LDWV, LDZ, N, NH, NSHFTS, NV LOGICAL WANTT, WANTZ DOUBLE PRECISION H( LDH, * ), SI( * ), SR( * ), U( LDU, * ), $ V( LDV, * ), WH( LDWH, * ), WV( LDWV, * ), $ Z( LDZ, * ) > \par Purpose: ============= > > \verbatim > > DLAQR5, called by DLAQR0, performs a > single small-bulge multi-shift QR sweep. > \endverbatim Arguments: ========== > \param[in] WANTT > \verbatim > WANTT is logical scalar > WANTT = .true. if the quasi-triangular Schur factor > is being computed. WANTT is set to .false. otherwise. > \endverbatim > > \param[in] WANTZ > \verbatim > WANTZ is logical scalar > WANTZ = .true. if the orthogonal Schur factor is being > computed. WANTZ is set to .false. otherwise. > \endverbatim > > \param[in] KACC22 > \verbatim > KACC22 is integer with value 0, 1, or 2. > Specifies the computation mode of far-from-diagonal > orthogonal updates. > = 0: DLAQR5 does not accumulate reflections and does not > use matrix-matrix multiply to update far-from-diagonal > matrix entries. > = 1: DLAQR5 accumulates reflections and uses matrix-matrix > multiply to update the far-from-diagonal matrix entries. > = 2: DLAQR5 accumulates reflections, uses matrix-matrix > multiply to update the far-from-diagonal matrix entries, > and takes advantage of 2-by-2 block structure during > matrix multiplies. > \endverbatim > > \param[in] N > \verbatim > N is integer scalar > N is the order of the Hessenberg matrix H upon which this > subroutine operates. > \endverbatim > > \param[in] KTOP > \verbatim > KTOP is integer scalar > \endverbatim > > \param[in] KBOT > \verbatim > KBOT is integer scalar > These are the first and last rows and columns of an > isolated diagonal block upon which the QR sweep is to be > applied. It is assumed without a check that > either KTOP = 1 or H(KTOP,KTOP-1) = 0 > and > either KBOT = N or H(KBOT+1,KBOT) = 0. > \endverbatim > > \param[in] NSHFTS > \verbatim > NSHFTS is integer scalar > NSHFTS gives the number of simultaneous shifts. NSHFTS > must be positive and even. > \endverbatim > > \param[in,out] SR > \verbatim > SR is DOUBLE PRECISION array of size (NSHFTS) > \endverbatim > > \param[in,out] SI > \verbatim > SI is DOUBLE PRECISION array of size (NSHFTS) > SR contains the real parts and SI contains the imaginary > parts of the NSHFTS shifts of origin that define the > multi-shift QR sweep. On output SR and SI may be > reordered. > \endverbatim > > \param[in,out] H > \verbatim > H is DOUBLE PRECISION array of size (LDH,N) > On input H contains a Hessenberg matrix. On output a > multi-shift QR sweep with shifts SR(J)+i*SI(J) is applied > to the isolated diagonal block in rows and columns KTOP > through KBOT. > \endverbatim > > \param[in] LDH > \verbatim > LDH is integer scalar > LDH is the leading dimension of H just as declared in the > calling procedure. LDH.GE.MAX(1,N). > \endverbatim > > \param[in] ILOZ > \verbatim > ILOZ is INTEGER > \endverbatim > > \param[in] IHIZ > \verbatim > IHIZ is INTEGER > Specify the rows of Z to which transformations must be > applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. IHIZ .LE. N > \endverbatim > > \param[in,out] Z > \verbatim > Z is DOUBLE PRECISION array of size (LDZ,IHI) > If WANTZ = .TRUE., then the QR Sweep orthogonal > similarity transformation is accumulated into > Z(ILOZ:IHIZ,ILO:IHI) from the right. > If WANTZ = .FALSE., then Z is unreferenced. > \endverbatim > > \param[in] LDZ > \verbatim > LDZ is integer scalar > LDA is the leading dimension of Z just as declared in > the calling procedure. LDZ.GE.N. > \endverbatim > > \param[out] V > \verbatim > V is DOUBLE PRECISION array of size (LDV,NSHFTS/2) > \endverbatim > > \param[in] LDV > \verbatim > LDV is integer scalar > LDV is the leading dimension of V as declared in the > calling procedure. LDV.GE.3. > \endverbatim > > \param[out] U > \verbatim > U is DOUBLE PRECISION array of size > (LDU,3*NSHFTS-3) > \endverbatim > > \param[in] LDU > \verbatim > LDU is integer scalar > LDU is the leading dimension of U just as declared in the > in the calling subroutine. LDU.GE.3*NSHFTS-3. > \endverbatim > > \param[in] NH > \verbatim > NH is integer scalar > NH is the number of columns in array WH available for > workspace. NH.GE.1. > \endverbatim > > \param[out] WH > \verbatim > WH is DOUBLE PRECISION array of size (LDWH,NH) > \endverbatim > > \param[in] LDWH > \verbatim > LDWH is integer scalar > Leading dimension of WH just as declared in the > calling procedure. LDWH.GE.3*NSHFTS-3. > \endverbatim > > \param[in] NV > \verbatim > NV is integer scalar > NV is the number of rows in WV agailable for workspace. > NV.GE.1. > \endverbatim > > \param[out] WV > \verbatim > WV is DOUBLE PRECISION array of size > (LDWV,3*NSHFTS-3) > \endverbatim > > \param[in] LDWV > \verbatim > LDWV is integer scalar > LDWV is the leading dimension of WV as declared in the > in the calling subroutine. LDWV.GE.NV. > \endverbatim Authors: ======== > \author Univ. of Tennessee > \author Univ. of California Berkeley > \author Univ. of Colorado Denver > \author NAG Ltd. > \date September 2012 > \ingroup doubleOTHERauxiliary > \par Contributors: ================== > > Karen Braman and Ralph Byers, Department of Mathematics, > University of Kansas, USA > \par References: ================ > > K. Braman, R. Byers and R. Mathias, The Multi-Shift QR > Algorithm Part I: Maintaining Well Focused Shifts, and Level 3 > Performance, SIAM Journal of Matrix Analysis, volume 23, pages > 929--947, 2002. > ===================================================================== Subroutine */ int igraphdlaqr5_(logical *wantt, logical *wantz, integer *kacc22, integer *n, integer *ktop, integer *kbot, integer *nshfts, doublereal *sr, doublereal *si, doublereal *h__, integer *ldh, integer *iloz, integer *ihiz, doublereal *z__, integer *ldz, doublereal *v, integer * ldv, doublereal *u, integer *ldu, integer *nv, doublereal *wv, integer *ldwv, integer *nh, doublereal *wh, integer *ldwh) { /* System generated locals */ integer h_dim1, h_offset, u_dim1, u_offset, v_dim1, v_offset, wh_dim1, wh_offset, wv_dim1, wv_offset, z_dim1, z_offset, i__1, i__2, i__3, i__4, i__5, i__6, i__7; doublereal d__1, d__2, d__3, d__4, d__5; /* Local variables */ integer i__, j, k, m, i2, j2, i4, j4, k1; doublereal h11, h12, h21, h22; integer m22, ns, nu; doublereal vt[3], scl; integer kdu, kms; doublereal ulp; integer knz, kzs; doublereal tst1, tst2, beta; logical blk22, bmp22; integer mend, jcol, jlen, jbot, mbot; doublereal swap; integer jtop, jrow, mtop; doublereal alpha; logical accum; extern /* Subroutine */ int igraphdgemm_(char *, char *, integer *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *); integer ndcol, incol, krcol, nbmps; extern /* Subroutine */ int igraphdtrmm_(char *, char *, char *, char *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *), igraphdlaqr1_( integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *), igraphdlabad_(doublereal *, doublereal *); extern doublereal igraphdlamch_(char *); extern /* Subroutine */ int igraphdlarfg_(integer *, doublereal *, doublereal *, integer *, doublereal *), igraphdlacpy_(char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *); doublereal safmin; extern /* Subroutine */ int igraphdlaset_(char *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *); doublereal safmax, refsum; integer mstart; doublereal smlnum; /* -- LAPACK auxiliary routine (version 3.4.2) -- -- LAPACK is a software package provided by Univ. of Tennessee, -- -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- September 2012 ================================================================ ==== If there are no shifts, then there is nothing to do. ==== Parameter adjustments */ --sr; --si; h_dim1 = *ldh; h_offset = 1 + h_dim1; h__ -= h_offset; z_dim1 = *ldz; z_offset = 1 + z_dim1; z__ -= z_offset; v_dim1 = *ldv; v_offset = 1 + v_dim1; v -= v_offset; u_dim1 = *ldu; u_offset = 1 + u_dim1; u -= u_offset; wv_dim1 = *ldwv; wv_offset = 1 + wv_dim1; wv -= wv_offset; wh_dim1 = *ldwh; wh_offset = 1 + wh_dim1; wh -= wh_offset; /* Function Body */ if (*nshfts < 2) { return 0; } /* ==== If the active block is empty or 1-by-1, then there . is nothing to do. ==== */ if (*ktop >= *kbot) { return 0; } /* ==== Shuffle shifts into pairs of real shifts and pairs . of complex conjugate shifts assuming complex . conjugate shifts are already adjacent to one . another. ==== */ i__1 = *nshfts - 2; for (i__ = 1; i__ <= i__1; i__ += 2) { if (si[i__] != -si[i__ + 1]) { swap = sr[i__]; sr[i__] = sr[i__ + 1]; sr[i__ + 1] = sr[i__ + 2]; sr[i__ + 2] = swap; swap = si[i__]; si[i__] = si[i__ + 1]; si[i__ + 1] = si[i__ + 2]; si[i__ + 2] = swap; } /* L10: */ } /* ==== NSHFTS is supposed to be even, but if it is odd, . then simply reduce it by one. The shuffle above . ensures that the dropped shift is real and that . the remaining shifts are paired. ==== */ ns = *nshfts - *nshfts % 2; /* ==== Machine constants for deflation ==== */ safmin = igraphdlamch_("SAFE MINIMUM"); safmax = 1. / safmin; igraphdlabad_(&safmin, &safmax); ulp = igraphdlamch_("PRECISION"); smlnum = safmin * ((doublereal) (*n) / ulp); /* ==== Use accumulated reflections to update far-from-diagonal . entries ? ==== */ accum = *kacc22 == 1 || *kacc22 == 2; /* ==== If so, exploit the 2-by-2 block structure? ==== */ blk22 = ns > 2 && *kacc22 == 2; /* ==== clear trash ==== */ if (*ktop + 2 <= *kbot) { h__[*ktop + 2 + *ktop * h_dim1] = 0.; } /* ==== NBMPS = number of 2-shift bulges in the chain ==== */ nbmps = ns / 2; /* ==== KDU = width of slab ==== */ kdu = nbmps * 6 - 3; /* ==== Create and chase chains of NBMPS bulges ==== */ i__1 = *kbot - 2; i__2 = nbmps * 3 - 2; for (incol = (1 - nbmps) * 3 + *ktop - 1; i__2 < 0 ? incol >= i__1 : incol <= i__1; incol += i__2) { ndcol = incol + kdu; if (accum) { igraphdlaset_("ALL", &kdu, &kdu, &c_b7, &c_b8, &u[u_offset], ldu); } /* ==== Near-the-diagonal bulge chase. The following loop . performs the near-the-diagonal part of a small bulge . multi-shift QR sweep. Each 6*NBMPS-2 column diagonal . chunk extends from column INCOL to column NDCOL . (including both column INCOL and column NDCOL). The . following loop chases a 3*NBMPS column long chain of . NBMPS bulges 3*NBMPS-2 columns to the right. (INCOL . may be less than KTOP and and NDCOL may be greater than . KBOT indicating phantom columns from which to chase . bulges before they are actually introduced or to which . to chase bulges beyond column KBOT.) ==== Computing MIN */ i__4 = incol + nbmps * 3 - 3, i__5 = *kbot - 2; i__3 = min(i__4,i__5); for (krcol = incol; krcol <= i__3; ++krcol) { /* ==== Bulges number MTOP to MBOT are active double implicit . shift bulges. There may or may not also be small . 2-by-2 bulge, if there is room. The inactive bulges . (if any) must wait until the active bulges have moved . down the diagonal to make room. The phantom matrix . paradigm described above helps keep track. ==== Computing MAX */ i__4 = 1, i__5 = (*ktop - 1 - krcol + 2) / 3 + 1; mtop = max(i__4,i__5); /* Computing MIN */ i__4 = nbmps, i__5 = (*kbot - krcol) / 3; mbot = min(i__4,i__5); m22 = mbot + 1; bmp22 = mbot < nbmps && krcol + (m22 - 1) * 3 == *kbot - 2; /* ==== Generate reflections to chase the chain right . one column. (The minimum value of K is KTOP-1.) ==== */ i__4 = mbot; for (m = mtop; m <= i__4; ++m) { k = krcol + (m - 1) * 3; if (k == *ktop - 1) { igraphdlaqr1_(&c__3, &h__[*ktop + *ktop * h_dim1], ldh, &sr[(m << 1) - 1], &si[(m << 1) - 1], &sr[m * 2], &si[m * 2], &v[m * v_dim1 + 1]); alpha = v[m * v_dim1 + 1]; igraphdlarfg_(&c__3, &alpha, &v[m * v_dim1 + 2], &c__1, &v[m * v_dim1 + 1]); } else { beta = h__[k + 1 + k * h_dim1]; v[m * v_dim1 + 2] = h__[k + 2 + k * h_dim1]; v[m * v_dim1 + 3] = h__[k + 3 + k * h_dim1]; igraphdlarfg_(&c__3, &beta, &v[m * v_dim1 + 2], &c__1, &v[m * v_dim1 + 1]); /* ==== A Bulge may collapse because of vigilant . deflation or destructive underflow. In the . underflow case, try the two-small-subdiagonals . trick to try to reinflate the bulge. ==== */ if (h__[k + 3 + k * h_dim1] != 0. || h__[k + 3 + (k + 1) * h_dim1] != 0. || h__[k + 3 + (k + 2) * h_dim1] == 0.) { /* ==== Typical case: not collapsed (yet). ==== */ h__[k + 1 + k * h_dim1] = beta; h__[k + 2 + k * h_dim1] = 0.; h__[k + 3 + k * h_dim1] = 0.; } else { /* ==== Atypical case: collapsed. Attempt to . reintroduce ignoring H(K+1,K) and H(K+2,K). . If the fill resulting from the new . reflector is too large, then abandon it. . Otherwise, use the new one. ==== */ igraphdlaqr1_(&c__3, &h__[k + 1 + (k + 1) * h_dim1], ldh, & sr[(m << 1) - 1], &si[(m << 1) - 1], &sr[m * 2], &si[m * 2], vt); alpha = vt[0]; igraphdlarfg_(&c__3, &alpha, &vt[1], &c__1, vt); refsum = vt[0] * (h__[k + 1 + k * h_dim1] + vt[1] * h__[k + 2 + k * h_dim1]); if ((d__1 = h__[k + 2 + k * h_dim1] - refsum * vt[1], abs(d__1)) + (d__2 = refsum * vt[2], abs(d__2) ) > ulp * ((d__3 = h__[k + k * h_dim1], abs( d__3)) + (d__4 = h__[k + 1 + (k + 1) * h_dim1] , abs(d__4)) + (d__5 = h__[k + 2 + (k + 2) * h_dim1], abs(d__5)))) { /* ==== Starting a new bulge here would . create non-negligible fill. Use . the old one with trepidation. ==== */ h__[k + 1 + k * h_dim1] = beta; h__[k + 2 + k * h_dim1] = 0.; h__[k + 3 + k * h_dim1] = 0.; } else { /* ==== Stating a new bulge here would . create only negligible fill. . Replace the old reflector with . the new one. ==== */ h__[k + 1 + k * h_dim1] -= refsum; h__[k + 2 + k * h_dim1] = 0.; h__[k + 3 + k * h_dim1] = 0.; v[m * v_dim1 + 1] = vt[0]; v[m * v_dim1 + 2] = vt[1]; v[m * v_dim1 + 3] = vt[2]; } } } /* L20: */ } /* ==== Generate a 2-by-2 reflection, if needed. ==== */ k = krcol + (m22 - 1) * 3; if (bmp22) { if (k == *ktop - 1) { igraphdlaqr1_(&c__2, &h__[k + 1 + (k + 1) * h_dim1], ldh, &sr[( m22 << 1) - 1], &si[(m22 << 1) - 1], &sr[m22 * 2], &si[m22 * 2], &v[m22 * v_dim1 + 1]); beta = v[m22 * v_dim1 + 1]; igraphdlarfg_(&c__2, &beta, &v[m22 * v_dim1 + 2], &c__1, &v[m22 * v_dim1 + 1]); } else { beta = h__[k + 1 + k * h_dim1]; v[m22 * v_dim1 + 2] = h__[k + 2 + k * h_dim1]; igraphdlarfg_(&c__2, &beta, &v[m22 * v_dim1 + 2], &c__1, &v[m22 * v_dim1 + 1]); h__[k + 1 + k * h_dim1] = beta; h__[k + 2 + k * h_dim1] = 0.; } } /* ==== Multiply H by reflections from the left ==== */ if (accum) { jbot = min(ndcol,*kbot); } else if (*wantt) { jbot = *n; } else { jbot = *kbot; } i__4 = jbot; for (j = max(*ktop,krcol); j <= i__4; ++j) { /* Computing MIN */ i__5 = mbot, i__6 = (j - krcol + 2) / 3; mend = min(i__5,i__6); i__5 = mend; for (m = mtop; m <= i__5; ++m) { k = krcol + (m - 1) * 3; refsum = v[m * v_dim1 + 1] * (h__[k + 1 + j * h_dim1] + v[ m * v_dim1 + 2] * h__[k + 2 + j * h_dim1] + v[m * v_dim1 + 3] * h__[k + 3 + j * h_dim1]); h__[k + 1 + j * h_dim1] -= refsum; h__[k + 2 + j * h_dim1] -= refsum * v[m * v_dim1 + 2]; h__[k + 3 + j * h_dim1] -= refsum * v[m * v_dim1 + 3]; /* L30: */ } /* L40: */ } if (bmp22) { k = krcol + (m22 - 1) * 3; /* Computing MAX */ i__4 = k + 1; i__5 = jbot; for (j = max(i__4,*ktop); j <= i__5; ++j) { refsum = v[m22 * v_dim1 + 1] * (h__[k + 1 + j * h_dim1] + v[m22 * v_dim1 + 2] * h__[k + 2 + j * h_dim1]); h__[k + 1 + j * h_dim1] -= refsum; h__[k + 2 + j * h_dim1] -= refsum * v[m22 * v_dim1 + 2]; /* L50: */ } } /* ==== Multiply H by reflections from the right. . Delay filling in the last row until the . vigilant deflation check is complete. ==== */ if (accum) { jtop = max(*ktop,incol); } else if (*wantt) { jtop = 1; } else { jtop = *ktop; } i__5 = mbot; for (m = mtop; m <= i__5; ++m) { if (v[m * v_dim1 + 1] != 0.) { k = krcol + (m - 1) * 3; /* Computing MIN */ i__6 = *kbot, i__7 = k + 3; i__4 = min(i__6,i__7); for (j = jtop; j <= i__4; ++j) { refsum = v[m * v_dim1 + 1] * (h__[j + (k + 1) * h_dim1] + v[m * v_dim1 + 2] * h__[j + (k + 2) * h_dim1] + v[m * v_dim1 + 3] * h__[j + (k + 3) * h_dim1]); h__[j + (k + 1) * h_dim1] -= refsum; h__[j + (k + 2) * h_dim1] -= refsum * v[m * v_dim1 + 2]; h__[j + (k + 3) * h_dim1] -= refsum * v[m * v_dim1 + 3]; /* L60: */ } if (accum) { /* ==== Accumulate U. (If necessary, update Z later . with with an efficient matrix-matrix . multiply.) ==== */ kms = k - incol; /* Computing MAX */ i__4 = 1, i__6 = *ktop - incol; i__7 = kdu; for (j = max(i__4,i__6); j <= i__7; ++j) { refsum = v[m * v_dim1 + 1] * (u[j + (kms + 1) * u_dim1] + v[m * v_dim1 + 2] * u[j + (kms + 2) * u_dim1] + v[m * v_dim1 + 3] * u[j + (kms + 3) * u_dim1]); u[j + (kms + 1) * u_dim1] -= refsum; u[j + (kms + 2) * u_dim1] -= refsum * v[m * v_dim1 + 2]; u[j + (kms + 3) * u_dim1] -= refsum * v[m * v_dim1 + 3]; /* L70: */ } } else if (*wantz) { /* ==== U is not accumulated, so update Z . now by multiplying by reflections . from the right. ==== */ i__7 = *ihiz; for (j = *iloz; j <= i__7; ++j) { refsum = v[m * v_dim1 + 1] * (z__[j + (k + 1) * z_dim1] + v[m * v_dim1 + 2] * z__[j + (k + 2) * z_dim1] + v[m * v_dim1 + 3] * z__[ j + (k + 3) * z_dim1]); z__[j + (k + 1) * z_dim1] -= refsum; z__[j + (k + 2) * z_dim1] -= refsum * v[m * v_dim1 + 2]; z__[j + (k + 3) * z_dim1] -= refsum * v[m * v_dim1 + 3]; /* L80: */ } } } /* L90: */ } /* ==== Special case: 2-by-2 reflection (if needed) ==== */ k = krcol + (m22 - 1) * 3; if (bmp22) { if (v[m22 * v_dim1 + 1] != 0.) { /* Computing MIN */ i__7 = *kbot, i__4 = k + 3; i__5 = min(i__7,i__4); for (j = jtop; j <= i__5; ++j) { refsum = v[m22 * v_dim1 + 1] * (h__[j + (k + 1) * h_dim1] + v[m22 * v_dim1 + 2] * h__[j + (k + 2) * h_dim1]); h__[j + (k + 1) * h_dim1] -= refsum; h__[j + (k + 2) * h_dim1] -= refsum * v[m22 * v_dim1 + 2]; /* L100: */ } if (accum) { kms = k - incol; /* Computing MAX */ i__5 = 1, i__7 = *ktop - incol; i__4 = kdu; for (j = max(i__5,i__7); j <= i__4; ++j) { refsum = v[m22 * v_dim1 + 1] * (u[j + (kms + 1) * u_dim1] + v[m22 * v_dim1 + 2] * u[j + ( kms + 2) * u_dim1]); u[j + (kms + 1) * u_dim1] -= refsum; u[j + (kms + 2) * u_dim1] -= refsum * v[m22 * v_dim1 + 2]; /* L110: */ } } else if (*wantz) { i__4 = *ihiz; for (j = *iloz; j <= i__4; ++j) { refsum = v[m22 * v_dim1 + 1] * (z__[j + (k + 1) * z_dim1] + v[m22 * v_dim1 + 2] * z__[j + ( k + 2) * z_dim1]); z__[j + (k + 1) * z_dim1] -= refsum; z__[j + (k + 2) * z_dim1] -= refsum * v[m22 * v_dim1 + 2]; /* L120: */ } } } } /* ==== Vigilant deflation check ==== */ mstart = mtop; if (krcol + (mstart - 1) * 3 < *ktop) { ++mstart; } mend = mbot; if (bmp22) { ++mend; } if (krcol == *kbot - 2) { ++mend; } i__4 = mend; for (m = mstart; m <= i__4; ++m) { /* Computing MIN */ i__5 = *kbot - 1, i__7 = krcol + (m - 1) * 3; k = min(i__5,i__7); /* ==== The following convergence test requires that . the tradition small-compared-to-nearby-diagonals . criterion and the Ahues & Tisseur (LAWN 122, 1997) . criteria both be satisfied. The latter improves . accuracy in some examples. Falling back on an . alternate convergence criterion when TST1 or TST2 . is zero (as done here) is traditional but probably . unnecessary. ==== */ if (h__[k + 1 + k * h_dim1] != 0.) { tst1 = (d__1 = h__[k + k * h_dim1], abs(d__1)) + (d__2 = h__[k + 1 + (k + 1) * h_dim1], abs(d__2)); if (tst1 == 0.) { if (k >= *ktop + 1) { tst1 += (d__1 = h__[k + (k - 1) * h_dim1], abs( d__1)); } if (k >= *ktop + 2) { tst1 += (d__1 = h__[k + (k - 2) * h_dim1], abs( d__1)); } if (k >= *ktop + 3) { tst1 += (d__1 = h__[k + (k - 3) * h_dim1], abs( d__1)); } if (k <= *kbot - 2) { tst1 += (d__1 = h__[k + 2 + (k + 1) * h_dim1], abs(d__1)); } if (k <= *kbot - 3) { tst1 += (d__1 = h__[k + 3 + (k + 1) * h_dim1], abs(d__1)); } if (k <= *kbot - 4) { tst1 += (d__1 = h__[k + 4 + (k + 1) * h_dim1], abs(d__1)); } } /* Computing MAX */ d__2 = smlnum, d__3 = ulp * tst1; if ((d__1 = h__[k + 1 + k * h_dim1], abs(d__1)) <= max( d__2,d__3)) { /* Computing MAX */ d__3 = (d__1 = h__[k + 1 + k * h_dim1], abs(d__1)), d__4 = (d__2 = h__[k + (k + 1) * h_dim1], abs( d__2)); h12 = max(d__3,d__4); /* Computing MIN */ d__3 = (d__1 = h__[k + 1 + k * h_dim1], abs(d__1)), d__4 = (d__2 = h__[k + (k + 1) * h_dim1], abs( d__2)); h21 = min(d__3,d__4); /* Computing MAX */ d__3 = (d__1 = h__[k + 1 + (k + 1) * h_dim1], abs( d__1)), d__4 = (d__2 = h__[k + k * h_dim1] - h__[k + 1 + (k + 1) * h_dim1], abs(d__2)); h11 = max(d__3,d__4); /* Computing MIN */ d__3 = (d__1 = h__[k + 1 + (k + 1) * h_dim1], abs( d__1)), d__4 = (d__2 = h__[k + k * h_dim1] - h__[k + 1 + (k + 1) * h_dim1], abs(d__2)); h22 = min(d__3,d__4); scl = h11 + h12; tst2 = h22 * (h11 / scl); /* Computing MAX */ d__1 = smlnum, d__2 = ulp * tst2; if (tst2 == 0. || h21 * (h12 / scl) <= max(d__1,d__2)) { h__[k + 1 + k * h_dim1] = 0.; } } } /* L130: */ } /* ==== Fill in the last row of each bulge. ==== Computing MIN */ i__4 = nbmps, i__5 = (*kbot - krcol - 1) / 3; mend = min(i__4,i__5); i__4 = mend; for (m = mtop; m <= i__4; ++m) { k = krcol + (m - 1) * 3; refsum = v[m * v_dim1 + 1] * v[m * v_dim1 + 3] * h__[k + 4 + ( k + 3) * h_dim1]; h__[k + 4 + (k + 1) * h_dim1] = -refsum; h__[k + 4 + (k + 2) * h_dim1] = -refsum * v[m * v_dim1 + 2]; h__[k + 4 + (k + 3) * h_dim1] -= refsum * v[m * v_dim1 + 3]; /* L140: */ } /* ==== End of near-the-diagonal bulge chase. ==== L150: */ } /* ==== Use U (if accumulated) to update far-from-diagonal . entries in H. If required, use U to update Z as . well. ==== */ if (accum) { if (*wantt) { jtop = 1; jbot = *n; } else { jtop = *ktop; jbot = *kbot; } if (! blk22 || incol < *ktop || ndcol > *kbot || ns <= 2) { /* ==== Updates not exploiting the 2-by-2 block . structure of U. K1 and NU keep track of . the location and size of U in the special . cases of introducing bulges and chasing . bulges off the bottom. In these special . cases and in case the number of shifts . is NS = 2, there is no 2-by-2 block . structure to exploit. ==== Computing MAX */ i__3 = 1, i__4 = *ktop - incol; k1 = max(i__3,i__4); /* Computing MAX */ i__3 = 0, i__4 = ndcol - *kbot; nu = kdu - max(i__3,i__4) - k1 + 1; /* ==== Horizontal Multiply ==== */ i__3 = jbot; i__4 = *nh; for (jcol = min(ndcol,*kbot) + 1; i__4 < 0 ? jcol >= i__3 : jcol <= i__3; jcol += i__4) { /* Computing MIN */ i__5 = *nh, i__7 = jbot - jcol + 1; jlen = min(i__5,i__7); igraphdgemm_("C", "N", &nu, &jlen, &nu, &c_b8, &u[k1 + k1 * u_dim1], ldu, &h__[incol + k1 + jcol * h_dim1], ldh, &c_b7, &wh[wh_offset], ldwh); igraphdlacpy_("ALL", &nu, &jlen, &wh[wh_offset], ldwh, &h__[ incol + k1 + jcol * h_dim1], ldh); /* L160: */ } /* ==== Vertical multiply ==== */ i__4 = max(*ktop,incol) - 1; i__3 = *nv; for (jrow = jtop; i__3 < 0 ? jrow >= i__4 : jrow <= i__4; jrow += i__3) { /* Computing MIN */ i__5 = *nv, i__7 = max(*ktop,incol) - jrow; jlen = min(i__5,i__7); igraphdgemm_("N", "N", &jlen, &nu, &nu, &c_b8, &h__[jrow + ( incol + k1) * h_dim1], ldh, &u[k1 + k1 * u_dim1], ldu, &c_b7, &wv[wv_offset], ldwv); igraphdlacpy_("ALL", &jlen, &nu, &wv[wv_offset], ldwv, &h__[ jrow + (incol + k1) * h_dim1], ldh); /* L170: */ } /* ==== Z multiply (also vertical) ==== */ if (*wantz) { i__3 = *ihiz; i__4 = *nv; for (jrow = *iloz; i__4 < 0 ? jrow >= i__3 : jrow <= i__3; jrow += i__4) { /* Computing MIN */ i__5 = *nv, i__7 = *ihiz - jrow + 1; jlen = min(i__5,i__7); igraphdgemm_("N", "N", &jlen, &nu, &nu, &c_b8, &z__[jrow + ( incol + k1) * z_dim1], ldz, &u[k1 + k1 * u_dim1], ldu, &c_b7, &wv[wv_offset], ldwv); igraphdlacpy_("ALL", &jlen, &nu, &wv[wv_offset], ldwv, &z__[ jrow + (incol + k1) * z_dim1], ldz) ; /* L180: */ } } } else { /* ==== Updates exploiting U's 2-by-2 block structure. . (I2, I4, J2, J4 are the last rows and columns . of the blocks.) ==== */ i2 = (kdu + 1) / 2; i4 = kdu; j2 = i4 - i2; j4 = kdu; /* ==== KZS and KNZ deal with the band of zeros . along the diagonal of one of the triangular . blocks. ==== */ kzs = j4 - j2 - (ns + 1); knz = ns + 1; /* ==== Horizontal multiply ==== */ i__4 = jbot; i__3 = *nh; for (jcol = min(ndcol,*kbot) + 1; i__3 < 0 ? jcol >= i__4 : jcol <= i__4; jcol += i__3) { /* Computing MIN */ i__5 = *nh, i__7 = jbot - jcol + 1; jlen = min(i__5,i__7); /* ==== Copy bottom of H to top+KZS of scratch ==== (The first KZS rows get multiplied by zero.) ==== */ igraphdlacpy_("ALL", &knz, &jlen, &h__[incol + 1 + j2 + jcol * h_dim1], ldh, &wh[kzs + 1 + wh_dim1], ldwh); /* ==== Multiply by U21**T ==== */ igraphdlaset_("ALL", &kzs, &jlen, &c_b7, &c_b7, &wh[wh_offset], ldwh); igraphdtrmm_("L", "U", "C", "N", &knz, &jlen, &c_b8, &u[j2 + 1 + (kzs + 1) * u_dim1], ldu, &wh[kzs + 1 + wh_dim1] , ldwh); /* ==== Multiply top of H by U11**T ==== */ igraphdgemm_("C", "N", &i2, &jlen, &j2, &c_b8, &u[u_offset], ldu, &h__[incol + 1 + jcol * h_dim1], ldh, &c_b8, &wh[wh_offset], ldwh); /* ==== Copy top of H to bottom of WH ==== */ igraphdlacpy_("ALL", &j2, &jlen, &h__[incol + 1 + jcol * h_dim1] , ldh, &wh[i2 + 1 + wh_dim1], ldwh); /* ==== Multiply by U21**T ==== */ igraphdtrmm_("L", "L", "C", "N", &j2, &jlen, &c_b8, &u[(i2 + 1) * u_dim1 + 1], ldu, &wh[i2 + 1 + wh_dim1], ldwh); /* ==== Multiply by U22 ==== */ i__5 = i4 - i2; i__7 = j4 - j2; igraphdgemm_("C", "N", &i__5, &jlen, &i__7, &c_b8, &u[j2 + 1 + ( i2 + 1) * u_dim1], ldu, &h__[incol + 1 + j2 + jcol * h_dim1], ldh, &c_b8, &wh[i2 + 1 + wh_dim1], ldwh); /* ==== Copy it back ==== */ igraphdlacpy_("ALL", &kdu, &jlen, &wh[wh_offset], ldwh, &h__[ incol + 1 + jcol * h_dim1], ldh); /* L190: */ } /* ==== Vertical multiply ==== */ i__3 = max(incol,*ktop) - 1; i__4 = *nv; for (jrow = jtop; i__4 < 0 ? jrow >= i__3 : jrow <= i__3; jrow += i__4) { /* Computing MIN */ i__5 = *nv, i__7 = max(incol,*ktop) - jrow; jlen = min(i__5,i__7); /* ==== Copy right of H to scratch (the first KZS . columns get multiplied by zero) ==== */ igraphdlacpy_("ALL", &jlen, &knz, &h__[jrow + (incol + 1 + j2) * h_dim1], ldh, &wv[(kzs + 1) * wv_dim1 + 1], ldwv); /* ==== Multiply by U21 ==== */ igraphdlaset_("ALL", &jlen, &kzs, &c_b7, &c_b7, &wv[wv_offset], ldwv); igraphdtrmm_("R", "U", "N", "N", &jlen, &knz, &c_b8, &u[j2 + 1 + (kzs + 1) * u_dim1], ldu, &wv[(kzs + 1) * wv_dim1 + 1], ldwv); /* ==== Multiply by U11 ==== */ igraphdgemm_("N", "N", &jlen, &i2, &j2, &c_b8, &h__[jrow + ( incol + 1) * h_dim1], ldh, &u[u_offset], ldu, & c_b8, &wv[wv_offset], ldwv); /* ==== Copy left of H to right of scratch ==== */ igraphdlacpy_("ALL", &jlen, &j2, &h__[jrow + (incol + 1) * h_dim1], ldh, &wv[(i2 + 1) * wv_dim1 + 1], ldwv); /* ==== Multiply by U21 ==== */ i__5 = i4 - i2; igraphdtrmm_("R", "L", "N", "N", &jlen, &i__5, &c_b8, &u[(i2 + 1) * u_dim1 + 1], ldu, &wv[(i2 + 1) * wv_dim1 + 1] , ldwv); /* ==== Multiply by U22 ==== */ i__5 = i4 - i2; i__7 = j4 - j2; igraphdgemm_("N", "N", &jlen, &i__5, &i__7, &c_b8, &h__[jrow + ( incol + 1 + j2) * h_dim1], ldh, &u[j2 + 1 + (i2 + 1) * u_dim1], ldu, &c_b8, &wv[(i2 + 1) * wv_dim1 + 1], ldwv); /* ==== Copy it back ==== */ igraphdlacpy_("ALL", &jlen, &kdu, &wv[wv_offset], ldwv, &h__[ jrow + (incol + 1) * h_dim1], ldh); /* L200: */ } /* ==== Multiply Z (also vertical) ==== */ if (*wantz) { i__4 = *ihiz; i__3 = *nv; for (jrow = *iloz; i__3 < 0 ? jrow >= i__4 : jrow <= i__4; jrow += i__3) { /* Computing MIN */ i__5 = *nv, i__7 = *ihiz - jrow + 1; jlen = min(i__5,i__7); /* ==== Copy right of Z to left of scratch (first . KZS columns get multiplied by zero) ==== */ igraphdlacpy_("ALL", &jlen, &knz, &z__[jrow + (incol + 1 + j2) * z_dim1], ldz, &wv[(kzs + 1) * wv_dim1 + 1], ldwv); /* ==== Multiply by U12 ==== */ igraphdlaset_("ALL", &jlen, &kzs, &c_b7, &c_b7, &wv[ wv_offset], ldwv); igraphdtrmm_("R", "U", "N", "N", &jlen, &knz, &c_b8, &u[j2 + 1 + (kzs + 1) * u_dim1], ldu, &wv[(kzs + 1) * wv_dim1 + 1], ldwv); /* ==== Multiply by U11 ==== */ igraphdgemm_("N", "N", &jlen, &i2, &j2, &c_b8, &z__[jrow + ( incol + 1) * z_dim1], ldz, &u[u_offset], ldu, &c_b8, &wv[wv_offset], ldwv); /* ==== Copy left of Z to right of scratch ==== */ igraphdlacpy_("ALL", &jlen, &j2, &z__[jrow + (incol + 1) * z_dim1], ldz, &wv[(i2 + 1) * wv_dim1 + 1], ldwv); /* ==== Multiply by U21 ==== */ i__5 = i4 - i2; igraphdtrmm_("R", "L", "N", "N", &jlen, &i__5, &c_b8, &u[( i2 + 1) * u_dim1 + 1], ldu, &wv[(i2 + 1) * wv_dim1 + 1], ldwv); /* ==== Multiply by U22 ==== */ i__5 = i4 - i2; i__7 = j4 - j2; igraphdgemm_("N", "N", &jlen, &i__5, &i__7, &c_b8, &z__[ jrow + (incol + 1 + j2) * z_dim1], ldz, &u[j2 + 1 + (i2 + 1) * u_dim1], ldu, &c_b8, &wv[(i2 + 1) * wv_dim1 + 1], ldwv); /* ==== Copy the result back to Z ==== */ igraphdlacpy_("ALL", &jlen, &kdu, &wv[wv_offset], ldwv, & z__[jrow + (incol + 1) * z_dim1], ldz); /* L210: */ } } } } /* L220: */ } /* ==== End of DLAQR5 ==== */ return 0; } /* igraphdlaqr5_ */