/* -- translated by f2c (version 20191129). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Table of constant values */ static integer c__1 = 1; static logical c_false = FALSE_; static integer c__2 = 2; static doublereal c_b21 = 1.; static doublereal c_b25 = 0.; static logical c_true = TRUE_; /* > \brief \b DLAQTR solves a real quasi-triangular system of equations, or a complex quasi-triangular system of special form, in real arithmetic. =========== DOCUMENTATION =========== Online html documentation available at http://www.netlib.org/lapack/explore-html/ > \htmlonly > Download DLAQTR + dependencies > > [TGZ] > > [ZIP] > > [TXT] > \endhtmlonly Definition: =========== SUBROUTINE DLAQTR( LTRAN, LREAL, N, T, LDT, B, W, SCALE, X, WORK, INFO ) LOGICAL LREAL, LTRAN INTEGER INFO, LDT, N DOUBLE PRECISION SCALE, W DOUBLE PRECISION B( * ), T( LDT, * ), WORK( * ), X( * ) > \par Purpose: ============= > > \verbatim > > DLAQTR solves the real quasi-triangular system > > op(T)*p = scale*c, if LREAL = .TRUE. > > or the complex quasi-triangular systems > > op(T + iB)*(p+iq) = scale*(c+id), if LREAL = .FALSE. > > in real arithmetic, where T is upper quasi-triangular. > If LREAL = .FALSE., then the first diagonal block of T must be > 1 by 1, B is the specially structured matrix > > B = [ b(1) b(2) ... b(n) ] > [ w ] > [ w ] > [ . ] > [ w ] > > op(A) = A or A**T, A**T denotes the transpose of > matrix A. > > On input, X = [ c ]. On output, X = [ p ]. > [ d ] [ q ] > > This subroutine is designed for the condition number estimation > in routine DTRSNA. > \endverbatim Arguments: ========== > \param[in] LTRAN > \verbatim > LTRAN is LOGICAL > On entry, LTRAN specifies the option of conjugate transpose: > = .FALSE., op(T+i*B) = T+i*B, > = .TRUE., op(T+i*B) = (T+i*B)**T. > \endverbatim > > \param[in] LREAL > \verbatim > LREAL is LOGICAL > On entry, LREAL specifies the input matrix structure: > = .FALSE., the input is complex > = .TRUE., the input is real > \endverbatim > > \param[in] N > \verbatim > N is INTEGER > On entry, N specifies the order of T+i*B. N >= 0. > \endverbatim > > \param[in] T > \verbatim > T is DOUBLE PRECISION array, dimension (LDT,N) > On entry, T contains a matrix in Schur canonical form. > If LREAL = .FALSE., then the first diagonal block of T mu > be 1 by 1. > \endverbatim > > \param[in] LDT > \verbatim > LDT is INTEGER > The leading dimension of the matrix T. LDT >= max(1,N). > \endverbatim > > \param[in] B > \verbatim > B is DOUBLE PRECISION array, dimension (N) > On entry, B contains the elements to form the matrix > B as described above. > If LREAL = .TRUE., B is not referenced. > \endverbatim > > \param[in] W > \verbatim > W is DOUBLE PRECISION > On entry, W is the diagonal element of the matrix B. > If LREAL = .TRUE., W is not referenced. > \endverbatim > > \param[out] SCALE > \verbatim > SCALE is DOUBLE PRECISION > On exit, SCALE is the scale factor. > \endverbatim > > \param[in,out] X > \verbatim > X is DOUBLE PRECISION array, dimension (2*N) > On entry, X contains the right hand side of the system. > On exit, X is overwritten by the solution. > \endverbatim > > \param[out] WORK > \verbatim > WORK is DOUBLE PRECISION array, dimension (N) > \endverbatim > > \param[out] INFO > \verbatim > INFO is INTEGER > On exit, INFO is set to > 0: successful exit. > 1: the some diagonal 1 by 1 block has been perturbed by > a small number SMIN to keep nonsingularity. > 2: the some diagonal 2 by 2 block has been perturbed by > a small number in DLALN2 to keep nonsingularity. > NOTE: In the interests of speed, this routine does not > check the inputs for errors. > \endverbatim Authors: ======== > \author Univ. of Tennessee > \author Univ. of California Berkeley > \author Univ. of Colorado Denver > \author NAG Ltd. > \date September 2012 > \ingroup doubleOTHERauxiliary ===================================================================== Subroutine */ int igraphdlaqtr_(logical *ltran, logical *lreal, integer *n, doublereal *t, integer *ldt, doublereal *b, doublereal *w, doublereal *scale, doublereal *x, doublereal *work, integer *info) { /* System generated locals */ integer t_dim1, t_offset, i__1, i__2; doublereal d__1, d__2, d__3, d__4, d__5, d__6; /* Local variables */ doublereal d__[4] /* was [2][2] */; integer i__, j, k; doublereal v[4] /* was [2][2] */, z__; integer j1, j2, n1, n2; doublereal si, xj, sr, rec, eps, tjj, tmp; extern doublereal igraphddot_(integer *, doublereal *, integer *, doublereal *, integer *); integer ierr; doublereal smin, xmax; extern /* Subroutine */ int igraphdscal_(integer *, doublereal *, doublereal *, integer *); extern doublereal igraphdasum_(integer *, doublereal *, integer *); extern /* Subroutine */ int igraphdaxpy_(integer *, doublereal *, doublereal *, integer *, doublereal *, integer *); integer jnext; doublereal sminw, xnorm; extern /* Subroutine */ int igraphdlaln2_(logical *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, doublereal * , doublereal *, integer *, doublereal *, doublereal *, integer *); extern doublereal igraphdlamch_(char *), igraphdlange_(char *, integer *, integer *, doublereal *, integer *, doublereal *); extern integer igraphidamax_(integer *, doublereal *, integer *); doublereal scaloc; extern /* Subroutine */ int igraphdladiv_(doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *); doublereal bignum; logical notran; doublereal smlnum; /* -- LAPACK auxiliary routine (version 3.4.2) -- -- LAPACK is a software package provided by Univ. of Tennessee, -- -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- September 2012 ===================================================================== Do not test the input parameters for errors Parameter adjustments */ t_dim1 = *ldt; t_offset = 1 + t_dim1; t -= t_offset; --b; --x; --work; /* Function Body */ notran = ! (*ltran); *info = 0; /* Quick return if possible */ if (*n == 0) { return 0; } /* Set constants to control overflow */ eps = igraphdlamch_("P"); smlnum = igraphdlamch_("S") / eps; bignum = 1. / smlnum; xnorm = igraphdlange_("M", n, n, &t[t_offset], ldt, d__); if (! (*lreal)) { /* Computing MAX */ d__1 = xnorm, d__2 = abs(*w), d__1 = max(d__1,d__2), d__2 = igraphdlange_( "M", n, &c__1, &b[1], n, d__); xnorm = max(d__1,d__2); } /* Computing MAX */ d__1 = smlnum, d__2 = eps * xnorm; smin = max(d__1,d__2); /* Compute 1-norm of each column of strictly upper triangular part of T to control overflow in triangular solver. */ work[1] = 0.; i__1 = *n; for (j = 2; j <= i__1; ++j) { i__2 = j - 1; work[j] = igraphdasum_(&i__2, &t[j * t_dim1 + 1], &c__1); /* L10: */ } if (! (*lreal)) { i__1 = *n; for (i__ = 2; i__ <= i__1; ++i__) { work[i__] += (d__1 = b[i__], abs(d__1)); /* L20: */ } } n2 = *n << 1; n1 = *n; if (! (*lreal)) { n1 = n2; } k = igraphidamax_(&n1, &x[1], &c__1); xmax = (d__1 = x[k], abs(d__1)); *scale = 1.; if (xmax > bignum) { *scale = bignum / xmax; igraphdscal_(&n1, scale, &x[1], &c__1); xmax = bignum; } if (*lreal) { if (notran) { /* Solve T*p = scale*c */ jnext = *n; for (j = *n; j >= 1; --j) { if (j > jnext) { goto L30; } j1 = j; j2 = j; jnext = j - 1; if (j > 1) { if (t[j + (j - 1) * t_dim1] != 0.) { j1 = j - 1; jnext = j - 2; } } if (j1 == j2) { /* Meet 1 by 1 diagonal block Scale to avoid overflow when computing x(j) = b(j)/T(j,j) */ xj = (d__1 = x[j1], abs(d__1)); tjj = (d__1 = t[j1 + j1 * t_dim1], abs(d__1)); tmp = t[j1 + j1 * t_dim1]; if (tjj < smin) { tmp = smin; tjj = smin; *info = 1; } if (xj == 0.) { goto L30; } if (tjj < 1.) { if (xj > bignum * tjj) { rec = 1. / xj; igraphdscal_(n, &rec, &x[1], &c__1); *scale *= rec; xmax *= rec; } } x[j1] /= tmp; xj = (d__1 = x[j1], abs(d__1)); /* Scale x if necessary to avoid overflow when adding a multiple of column j1 of T. */ if (xj > 1.) { rec = 1. / xj; if (work[j1] > (bignum - xmax) * rec) { igraphdscal_(n, &rec, &x[1], &c__1); *scale *= rec; } } if (j1 > 1) { i__1 = j1 - 1; d__1 = -x[j1]; igraphdaxpy_(&i__1, &d__1, &t[j1 * t_dim1 + 1], &c__1, &x[1] , &c__1); i__1 = j1 - 1; k = igraphidamax_(&i__1, &x[1], &c__1); xmax = (d__1 = x[k], abs(d__1)); } } else { /* Meet 2 by 2 diagonal block Call 2 by 2 linear system solve, to take care of possible overflow by scaling factor. */ d__[0] = x[j1]; d__[1] = x[j2]; igraphdlaln2_(&c_false, &c__2, &c__1, &smin, &c_b21, &t[j1 + j1 * t_dim1], ldt, &c_b21, &c_b21, d__, &c__2, & c_b25, &c_b25, v, &c__2, &scaloc, &xnorm, &ierr); if (ierr != 0) { *info = 2; } if (scaloc != 1.) { igraphdscal_(n, &scaloc, &x[1], &c__1); *scale *= scaloc; } x[j1] = v[0]; x[j2] = v[1]; /* Scale V(1,1) (= X(J1)) and/or V(2,1) (=X(J2)) to avoid overflow in updating right-hand side. Computing MAX */ d__1 = abs(v[0]), d__2 = abs(v[1]); xj = max(d__1,d__2); if (xj > 1.) { rec = 1. / xj; /* Computing MAX */ d__1 = work[j1], d__2 = work[j2]; if (max(d__1,d__2) > (bignum - xmax) * rec) { igraphdscal_(n, &rec, &x[1], &c__1); *scale *= rec; } } /* Update right-hand side */ if (j1 > 1) { i__1 = j1 - 1; d__1 = -x[j1]; igraphdaxpy_(&i__1, &d__1, &t[j1 * t_dim1 + 1], &c__1, &x[1] , &c__1); i__1 = j1 - 1; d__1 = -x[j2]; igraphdaxpy_(&i__1, &d__1, &t[j2 * t_dim1 + 1], &c__1, &x[1] , &c__1); i__1 = j1 - 1; k = igraphidamax_(&i__1, &x[1], &c__1); xmax = (d__1 = x[k], abs(d__1)); } } L30: ; } } else { /* Solve T**T*p = scale*c */ jnext = 1; i__1 = *n; for (j = 1; j <= i__1; ++j) { if (j < jnext) { goto L40; } j1 = j; j2 = j; jnext = j + 1; if (j < *n) { if (t[j + 1 + j * t_dim1] != 0.) { j2 = j + 1; jnext = j + 2; } } if (j1 == j2) { /* 1 by 1 diagonal block Scale if necessary to avoid overflow in forming the right-hand side element by inner product. */ xj = (d__1 = x[j1], abs(d__1)); if (xmax > 1.) { rec = 1. / xmax; if (work[j1] > (bignum - xj) * rec) { igraphdscal_(n, &rec, &x[1], &c__1); *scale *= rec; xmax *= rec; } } i__2 = j1 - 1; x[j1] -= igraphddot_(&i__2, &t[j1 * t_dim1 + 1], &c__1, &x[1], & c__1); xj = (d__1 = x[j1], abs(d__1)); tjj = (d__1 = t[j1 + j1 * t_dim1], abs(d__1)); tmp = t[j1 + j1 * t_dim1]; if (tjj < smin) { tmp = smin; tjj = smin; *info = 1; } if (tjj < 1.) { if (xj > bignum * tjj) { rec = 1. / xj; igraphdscal_(n, &rec, &x[1], &c__1); *scale *= rec; xmax *= rec; } } x[j1] /= tmp; /* Computing MAX */ d__2 = xmax, d__3 = (d__1 = x[j1], abs(d__1)); xmax = max(d__2,d__3); } else { /* 2 by 2 diagonal block Scale if necessary to avoid overflow in forming the right-hand side elements by inner product. Computing MAX */ d__3 = (d__1 = x[j1], abs(d__1)), d__4 = (d__2 = x[j2], abs(d__2)); xj = max(d__3,d__4); if (xmax > 1.) { rec = 1. / xmax; /* Computing MAX */ d__1 = work[j2], d__2 = work[j1]; if (max(d__1,d__2) > (bignum - xj) * rec) { igraphdscal_(n, &rec, &x[1], &c__1); *scale *= rec; xmax *= rec; } } i__2 = j1 - 1; d__[0] = x[j1] - igraphddot_(&i__2, &t[j1 * t_dim1 + 1], &c__1, &x[1], &c__1); i__2 = j1 - 1; d__[1] = x[j2] - igraphddot_(&i__2, &t[j2 * t_dim1 + 1], &c__1, &x[1], &c__1); igraphdlaln2_(&c_true, &c__2, &c__1, &smin, &c_b21, &t[j1 + j1 * t_dim1], ldt, &c_b21, &c_b21, d__, &c__2, &c_b25, &c_b25, v, &c__2, &scaloc, &xnorm, &ierr); if (ierr != 0) { *info = 2; } if (scaloc != 1.) { igraphdscal_(n, &scaloc, &x[1], &c__1); *scale *= scaloc; } x[j1] = v[0]; x[j2] = v[1]; /* Computing MAX */ d__3 = (d__1 = x[j1], abs(d__1)), d__4 = (d__2 = x[j2], abs(d__2)), d__3 = max(d__3,d__4); xmax = max(d__3,xmax); } L40: ; } } } else { /* Computing MAX */ d__1 = eps * abs(*w); sminw = max(d__1,smin); if (notran) { /* Solve (T + iB)*(p+iq) = c+id */ jnext = *n; for (j = *n; j >= 1; --j) { if (j > jnext) { goto L70; } j1 = j; j2 = j; jnext = j - 1; if (j > 1) { if (t[j + (j - 1) * t_dim1] != 0.) { j1 = j - 1; jnext = j - 2; } } if (j1 == j2) { /* 1 by 1 diagonal block Scale if necessary to avoid overflow in division */ z__ = *w; if (j1 == 1) { z__ = b[1]; } xj = (d__1 = x[j1], abs(d__1)) + (d__2 = x[*n + j1], abs( d__2)); tjj = (d__1 = t[j1 + j1 * t_dim1], abs(d__1)) + abs(z__); tmp = t[j1 + j1 * t_dim1]; if (tjj < sminw) { tmp = sminw; tjj = sminw; *info = 1; } if (xj == 0.) { goto L70; } if (tjj < 1.) { if (xj > bignum * tjj) { rec = 1. / xj; igraphdscal_(&n2, &rec, &x[1], &c__1); *scale *= rec; xmax *= rec; } } igraphdladiv_(&x[j1], &x[*n + j1], &tmp, &z__, &sr, &si); x[j1] = sr; x[*n + j1] = si; xj = (d__1 = x[j1], abs(d__1)) + (d__2 = x[*n + j1], abs( d__2)); /* Scale x if necessary to avoid overflow when adding a multiple of column j1 of T. */ if (xj > 1.) { rec = 1. / xj; if (work[j1] > (bignum - xmax) * rec) { igraphdscal_(&n2, &rec, &x[1], &c__1); *scale *= rec; } } if (j1 > 1) { i__1 = j1 - 1; d__1 = -x[j1]; igraphdaxpy_(&i__1, &d__1, &t[j1 * t_dim1 + 1], &c__1, &x[1] , &c__1); i__1 = j1 - 1; d__1 = -x[*n + j1]; igraphdaxpy_(&i__1, &d__1, &t[j1 * t_dim1 + 1], &c__1, &x[* n + 1], &c__1); x[1] += b[j1] * x[*n + j1]; x[*n + 1] -= b[j1] * x[j1]; xmax = 0.; i__1 = j1 - 1; for (k = 1; k <= i__1; ++k) { /* Computing MAX */ d__3 = xmax, d__4 = (d__1 = x[k], abs(d__1)) + ( d__2 = x[k + *n], abs(d__2)); xmax = max(d__3,d__4); /* L50: */ } } } else { /* Meet 2 by 2 diagonal block */ d__[0] = x[j1]; d__[1] = x[j2]; d__[2] = x[*n + j1]; d__[3] = x[*n + j2]; d__1 = -(*w); igraphdlaln2_(&c_false, &c__2, &c__2, &sminw, &c_b21, &t[j1 + j1 * t_dim1], ldt, &c_b21, &c_b21, d__, &c__2, & c_b25, &d__1, v, &c__2, &scaloc, &xnorm, &ierr); if (ierr != 0) { *info = 2; } if (scaloc != 1.) { i__1 = *n << 1; igraphdscal_(&i__1, &scaloc, &x[1], &c__1); *scale = scaloc * *scale; } x[j1] = v[0]; x[j2] = v[1]; x[*n + j1] = v[2]; x[*n + j2] = v[3]; /* Scale X(J1), .... to avoid overflow in updating right hand side. Computing MAX */ d__1 = abs(v[0]) + abs(v[2]), d__2 = abs(v[1]) + abs(v[3]) ; xj = max(d__1,d__2); if (xj > 1.) { rec = 1. / xj; /* Computing MAX */ d__1 = work[j1], d__2 = work[j2]; if (max(d__1,d__2) > (bignum - xmax) * rec) { igraphdscal_(&n2, &rec, &x[1], &c__1); *scale *= rec; } } /* Update the right-hand side. */ if (j1 > 1) { i__1 = j1 - 1; d__1 = -x[j1]; igraphdaxpy_(&i__1, &d__1, &t[j1 * t_dim1 + 1], &c__1, &x[1] , &c__1); i__1 = j1 - 1; d__1 = -x[j2]; igraphdaxpy_(&i__1, &d__1, &t[j2 * t_dim1 + 1], &c__1, &x[1] , &c__1); i__1 = j1 - 1; d__1 = -x[*n + j1]; igraphdaxpy_(&i__1, &d__1, &t[j1 * t_dim1 + 1], &c__1, &x[* n + 1], &c__1); i__1 = j1 - 1; d__1 = -x[*n + j2]; igraphdaxpy_(&i__1, &d__1, &t[j2 * t_dim1 + 1], &c__1, &x[* n + 1], &c__1); x[1] = x[1] + b[j1] * x[*n + j1] + b[j2] * x[*n + j2]; x[*n + 1] = x[*n + 1] - b[j1] * x[j1] - b[j2] * x[j2]; xmax = 0.; i__1 = j1 - 1; for (k = 1; k <= i__1; ++k) { /* Computing MAX */ d__3 = (d__1 = x[k], abs(d__1)) + (d__2 = x[k + * n], abs(d__2)); xmax = max(d__3,xmax); /* L60: */ } } } L70: ; } } else { /* Solve (T + iB)**T*(p+iq) = c+id */ jnext = 1; i__1 = *n; for (j = 1; j <= i__1; ++j) { if (j < jnext) { goto L80; } j1 = j; j2 = j; jnext = j + 1; if (j < *n) { if (t[j + 1 + j * t_dim1] != 0.) { j2 = j + 1; jnext = j + 2; } } if (j1 == j2) { /* 1 by 1 diagonal block Scale if necessary to avoid overflow in forming the right-hand side element by inner product. */ xj = (d__1 = x[j1], abs(d__1)) + (d__2 = x[j1 + *n], abs( d__2)); if (xmax > 1.) { rec = 1. / xmax; if (work[j1] > (bignum - xj) * rec) { igraphdscal_(&n2, &rec, &x[1], &c__1); *scale *= rec; xmax *= rec; } } i__2 = j1 - 1; x[j1] -= igraphddot_(&i__2, &t[j1 * t_dim1 + 1], &c__1, &x[1], & c__1); i__2 = j1 - 1; x[*n + j1] -= igraphddot_(&i__2, &t[j1 * t_dim1 + 1], &c__1, &x[ *n + 1], &c__1); if (j1 > 1) { x[j1] -= b[j1] * x[*n + 1]; x[*n + j1] += b[j1] * x[1]; } xj = (d__1 = x[j1], abs(d__1)) + (d__2 = x[j1 + *n], abs( d__2)); z__ = *w; if (j1 == 1) { z__ = b[1]; } /* Scale if necessary to avoid overflow in complex division */ tjj = (d__1 = t[j1 + j1 * t_dim1], abs(d__1)) + abs(z__); tmp = t[j1 + j1 * t_dim1]; if (tjj < sminw) { tmp = sminw; tjj = sminw; *info = 1; } if (tjj < 1.) { if (xj > bignum * tjj) { rec = 1. / xj; igraphdscal_(&n2, &rec, &x[1], &c__1); *scale *= rec; xmax *= rec; } } d__1 = -z__; igraphdladiv_(&x[j1], &x[*n + j1], &tmp, &d__1, &sr, &si); x[j1] = sr; x[j1 + *n] = si; /* Computing MAX */ d__3 = (d__1 = x[j1], abs(d__1)) + (d__2 = x[j1 + *n], abs(d__2)); xmax = max(d__3,xmax); } else { /* 2 by 2 diagonal block Scale if necessary to avoid overflow in forming the right-hand side element by inner product. Computing MAX */ d__5 = (d__1 = x[j1], abs(d__1)) + (d__2 = x[*n + j1], abs(d__2)), d__6 = (d__3 = x[j2], abs(d__3)) + ( d__4 = x[*n + j2], abs(d__4)); xj = max(d__5,d__6); if (xmax > 1.) { rec = 1. / xmax; /* Computing MAX */ d__1 = work[j1], d__2 = work[j2]; if (max(d__1,d__2) > (bignum - xj) / xmax) { igraphdscal_(&n2, &rec, &x[1], &c__1); *scale *= rec; xmax *= rec; } } i__2 = j1 - 1; d__[0] = x[j1] - igraphddot_(&i__2, &t[j1 * t_dim1 + 1], &c__1, &x[1], &c__1); i__2 = j1 - 1; d__[1] = x[j2] - igraphddot_(&i__2, &t[j2 * t_dim1 + 1], &c__1, &x[1], &c__1); i__2 = j1 - 1; d__[2] = x[*n + j1] - igraphddot_(&i__2, &t[j1 * t_dim1 + 1], & c__1, &x[*n + 1], &c__1); i__2 = j1 - 1; d__[3] = x[*n + j2] - igraphddot_(&i__2, &t[j2 * t_dim1 + 1], & c__1, &x[*n + 1], &c__1); d__[0] -= b[j1] * x[*n + 1]; d__[1] -= b[j2] * x[*n + 1]; d__[2] += b[j1] * x[1]; d__[3] += b[j2] * x[1]; igraphdlaln2_(&c_true, &c__2, &c__2, &sminw, &c_b21, &t[j1 + j1 * t_dim1], ldt, &c_b21, &c_b21, d__, &c__2, & c_b25, w, v, &c__2, &scaloc, &xnorm, &ierr); if (ierr != 0) { *info = 2; } if (scaloc != 1.) { igraphdscal_(&n2, &scaloc, &x[1], &c__1); *scale = scaloc * *scale; } x[j1] = v[0]; x[j2] = v[1]; x[*n + j1] = v[2]; x[*n + j2] = v[3]; /* Computing MAX */ d__5 = (d__1 = x[j1], abs(d__1)) + (d__2 = x[*n + j1], abs(d__2)), d__6 = (d__3 = x[j2], abs(d__3)) + ( d__4 = x[*n + j2], abs(d__4)), d__5 = max(d__5, d__6); xmax = max(d__5,xmax); } L80: ; } } } return 0; /* End of DLAQTR */ } /* igraphdlaqtr_ */