/* -- translated by f2c (version 20191129).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
/* Table of constant values */
static integer c__1 = 1;
static logical c_false = FALSE_;
static integer c__2 = 2;
static doublereal c_b21 = 1.;
static doublereal c_b25 = 0.;
static logical c_true = TRUE_;
/* > \brief \b DLAQTR solves a real quasi-triangular system of equations, or a complex quasi-triangular system
of special form, in real arithmetic.
=========== DOCUMENTATION ===========
Online html documentation available at
http://www.netlib.org/lapack/explore-html/
> \htmlonly
> Download DLAQTR + dependencies
>
> [TGZ]
>
> [ZIP]
>
> [TXT]
> \endhtmlonly
Definition:
===========
SUBROUTINE DLAQTR( LTRAN, LREAL, N, T, LDT, B, W, SCALE, X, WORK,
INFO )
LOGICAL LREAL, LTRAN
INTEGER INFO, LDT, N
DOUBLE PRECISION SCALE, W
DOUBLE PRECISION B( * ), T( LDT, * ), WORK( * ), X( * )
> \par Purpose:
=============
>
> \verbatim
>
> DLAQTR solves the real quasi-triangular system
>
> op(T)*p = scale*c, if LREAL = .TRUE.
>
> or the complex quasi-triangular systems
>
> op(T + iB)*(p+iq) = scale*(c+id), if LREAL = .FALSE.
>
> in real arithmetic, where T is upper quasi-triangular.
> If LREAL = .FALSE., then the first diagonal block of T must be
> 1 by 1, B is the specially structured matrix
>
> B = [ b(1) b(2) ... b(n) ]
> [ w ]
> [ w ]
> [ . ]
> [ w ]
>
> op(A) = A or A**T, A**T denotes the transpose of
> matrix A.
>
> On input, X = [ c ]. On output, X = [ p ].
> [ d ] [ q ]
>
> This subroutine is designed for the condition number estimation
> in routine DTRSNA.
> \endverbatim
Arguments:
==========
> \param[in] LTRAN
> \verbatim
> LTRAN is LOGICAL
> On entry, LTRAN specifies the option of conjugate transpose:
> = .FALSE., op(T+i*B) = T+i*B,
> = .TRUE., op(T+i*B) = (T+i*B)**T.
> \endverbatim
>
> \param[in] LREAL
> \verbatim
> LREAL is LOGICAL
> On entry, LREAL specifies the input matrix structure:
> = .FALSE., the input is complex
> = .TRUE., the input is real
> \endverbatim
>
> \param[in] N
> \verbatim
> N is INTEGER
> On entry, N specifies the order of T+i*B. N >= 0.
> \endverbatim
>
> \param[in] T
> \verbatim
> T is DOUBLE PRECISION array, dimension (LDT,N)
> On entry, T contains a matrix in Schur canonical form.
> If LREAL = .FALSE., then the first diagonal block of T mu
> be 1 by 1.
> \endverbatim
>
> \param[in] LDT
> \verbatim
> LDT is INTEGER
> The leading dimension of the matrix T. LDT >= max(1,N).
> \endverbatim
>
> \param[in] B
> \verbatim
> B is DOUBLE PRECISION array, dimension (N)
> On entry, B contains the elements to form the matrix
> B as described above.
> If LREAL = .TRUE., B is not referenced.
> \endverbatim
>
> \param[in] W
> \verbatim
> W is DOUBLE PRECISION
> On entry, W is the diagonal element of the matrix B.
> If LREAL = .TRUE., W is not referenced.
> \endverbatim
>
> \param[out] SCALE
> \verbatim
> SCALE is DOUBLE PRECISION
> On exit, SCALE is the scale factor.
> \endverbatim
>
> \param[in,out] X
> \verbatim
> X is DOUBLE PRECISION array, dimension (2*N)
> On entry, X contains the right hand side of the system.
> On exit, X is overwritten by the solution.
> \endverbatim
>
> \param[out] WORK
> \verbatim
> WORK is DOUBLE PRECISION array, dimension (N)
> \endverbatim
>
> \param[out] INFO
> \verbatim
> INFO is INTEGER
> On exit, INFO is set to
> 0: successful exit.
> 1: the some diagonal 1 by 1 block has been perturbed by
> a small number SMIN to keep nonsingularity.
> 2: the some diagonal 2 by 2 block has been perturbed by
> a small number in DLALN2 to keep nonsingularity.
> NOTE: In the interests of speed, this routine does not
> check the inputs for errors.
> \endverbatim
Authors:
========
> \author Univ. of Tennessee
> \author Univ. of California Berkeley
> \author Univ. of Colorado Denver
> \author NAG Ltd.
> \date September 2012
> \ingroup doubleOTHERauxiliary
=====================================================================
Subroutine */ int igraphdlaqtr_(logical *ltran, logical *lreal, integer *n,
doublereal *t, integer *ldt, doublereal *b, doublereal *w, doublereal
*scale, doublereal *x, doublereal *work, integer *info)
{
/* System generated locals */
integer t_dim1, t_offset, i__1, i__2;
doublereal d__1, d__2, d__3, d__4, d__5, d__6;
/* Local variables */
doublereal d__[4] /* was [2][2] */;
integer i__, j, k;
doublereal v[4] /* was [2][2] */, z__;
integer j1, j2, n1, n2;
doublereal si, xj, sr, rec, eps, tjj, tmp;
extern doublereal igraphddot_(integer *, doublereal *, integer *, doublereal *,
integer *);
integer ierr;
doublereal smin, xmax;
extern /* Subroutine */ int igraphdscal_(integer *, doublereal *, doublereal *,
integer *);
extern doublereal igraphdasum_(integer *, doublereal *, integer *);
extern /* Subroutine */ int igraphdaxpy_(integer *, doublereal *, doublereal *,
integer *, doublereal *, integer *);
integer jnext;
doublereal sminw, xnorm;
extern /* Subroutine */ int igraphdlaln2_(logical *, integer *, integer *,
doublereal *, doublereal *, doublereal *, integer *, doublereal *,
doublereal *, doublereal *, integer *, doublereal *, doublereal *
, doublereal *, integer *, doublereal *, doublereal *, integer *);
extern doublereal igraphdlamch_(char *), igraphdlange_(char *, integer *,
integer *, doublereal *, integer *, doublereal *);
extern integer igraphidamax_(integer *, doublereal *, integer *);
doublereal scaloc;
extern /* Subroutine */ int igraphdladiv_(doublereal *, doublereal *,
doublereal *, doublereal *, doublereal *, doublereal *);
doublereal bignum;
logical notran;
doublereal smlnum;
/* -- LAPACK auxiliary routine (version 3.4.2) --
-- LAPACK is a software package provided by Univ. of Tennessee, --
-- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
September 2012
=====================================================================
Do not test the input parameters for errors
Parameter adjustments */
t_dim1 = *ldt;
t_offset = 1 + t_dim1;
t -= t_offset;
--b;
--x;
--work;
/* Function Body */
notran = ! (*ltran);
*info = 0;
/* Quick return if possible */
if (*n == 0) {
return 0;
}
/* Set constants to control overflow */
eps = igraphdlamch_("P");
smlnum = igraphdlamch_("S") / eps;
bignum = 1. / smlnum;
xnorm = igraphdlange_("M", n, n, &t[t_offset], ldt, d__);
if (! (*lreal)) {
/* Computing MAX */
d__1 = xnorm, d__2 = abs(*w), d__1 = max(d__1,d__2), d__2 = igraphdlange_(
"M", n, &c__1, &b[1], n, d__);
xnorm = max(d__1,d__2);
}
/* Computing MAX */
d__1 = smlnum, d__2 = eps * xnorm;
smin = max(d__1,d__2);
/* Compute 1-norm of each column of strictly upper triangular
part of T to control overflow in triangular solver. */
work[1] = 0.;
i__1 = *n;
for (j = 2; j <= i__1; ++j) {
i__2 = j - 1;
work[j] = igraphdasum_(&i__2, &t[j * t_dim1 + 1], &c__1);
/* L10: */
}
if (! (*lreal)) {
i__1 = *n;
for (i__ = 2; i__ <= i__1; ++i__) {
work[i__] += (d__1 = b[i__], abs(d__1));
/* L20: */
}
}
n2 = *n << 1;
n1 = *n;
if (! (*lreal)) {
n1 = n2;
}
k = igraphidamax_(&n1, &x[1], &c__1);
xmax = (d__1 = x[k], abs(d__1));
*scale = 1.;
if (xmax > bignum) {
*scale = bignum / xmax;
igraphdscal_(&n1, scale, &x[1], &c__1);
xmax = bignum;
}
if (*lreal) {
if (notran) {
/* Solve T*p = scale*c */
jnext = *n;
for (j = *n; j >= 1; --j) {
if (j > jnext) {
goto L30;
}
j1 = j;
j2 = j;
jnext = j - 1;
if (j > 1) {
if (t[j + (j - 1) * t_dim1] != 0.) {
j1 = j - 1;
jnext = j - 2;
}
}
if (j1 == j2) {
/* Meet 1 by 1 diagonal block
Scale to avoid overflow when computing
x(j) = b(j)/T(j,j) */
xj = (d__1 = x[j1], abs(d__1));
tjj = (d__1 = t[j1 + j1 * t_dim1], abs(d__1));
tmp = t[j1 + j1 * t_dim1];
if (tjj < smin) {
tmp = smin;
tjj = smin;
*info = 1;
}
if (xj == 0.) {
goto L30;
}
if (tjj < 1.) {
if (xj > bignum * tjj) {
rec = 1. / xj;
igraphdscal_(n, &rec, &x[1], &c__1);
*scale *= rec;
xmax *= rec;
}
}
x[j1] /= tmp;
xj = (d__1 = x[j1], abs(d__1));
/* Scale x if necessary to avoid overflow when adding a
multiple of column j1 of T. */
if (xj > 1.) {
rec = 1. / xj;
if (work[j1] > (bignum - xmax) * rec) {
igraphdscal_(n, &rec, &x[1], &c__1);
*scale *= rec;
}
}
if (j1 > 1) {
i__1 = j1 - 1;
d__1 = -x[j1];
igraphdaxpy_(&i__1, &d__1, &t[j1 * t_dim1 + 1], &c__1, &x[1]
, &c__1);
i__1 = j1 - 1;
k = igraphidamax_(&i__1, &x[1], &c__1);
xmax = (d__1 = x[k], abs(d__1));
}
} else {
/* Meet 2 by 2 diagonal block
Call 2 by 2 linear system solve, to take
care of possible overflow by scaling factor. */
d__[0] = x[j1];
d__[1] = x[j2];
igraphdlaln2_(&c_false, &c__2, &c__1, &smin, &c_b21, &t[j1 + j1
* t_dim1], ldt, &c_b21, &c_b21, d__, &c__2, &
c_b25, &c_b25, v, &c__2, &scaloc, &xnorm, &ierr);
if (ierr != 0) {
*info = 2;
}
if (scaloc != 1.) {
igraphdscal_(n, &scaloc, &x[1], &c__1);
*scale *= scaloc;
}
x[j1] = v[0];
x[j2] = v[1];
/* Scale V(1,1) (= X(J1)) and/or V(2,1) (=X(J2))
to avoid overflow in updating right-hand side.
Computing MAX */
d__1 = abs(v[0]), d__2 = abs(v[1]);
xj = max(d__1,d__2);
if (xj > 1.) {
rec = 1. / xj;
/* Computing MAX */
d__1 = work[j1], d__2 = work[j2];
if (max(d__1,d__2) > (bignum - xmax) * rec) {
igraphdscal_(n, &rec, &x[1], &c__1);
*scale *= rec;
}
}
/* Update right-hand side */
if (j1 > 1) {
i__1 = j1 - 1;
d__1 = -x[j1];
igraphdaxpy_(&i__1, &d__1, &t[j1 * t_dim1 + 1], &c__1, &x[1]
, &c__1);
i__1 = j1 - 1;
d__1 = -x[j2];
igraphdaxpy_(&i__1, &d__1, &t[j2 * t_dim1 + 1], &c__1, &x[1]
, &c__1);
i__1 = j1 - 1;
k = igraphidamax_(&i__1, &x[1], &c__1);
xmax = (d__1 = x[k], abs(d__1));
}
}
L30:
;
}
} else {
/* Solve T**T*p = scale*c */
jnext = 1;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
if (j < jnext) {
goto L40;
}
j1 = j;
j2 = j;
jnext = j + 1;
if (j < *n) {
if (t[j + 1 + j * t_dim1] != 0.) {
j2 = j + 1;
jnext = j + 2;
}
}
if (j1 == j2) {
/* 1 by 1 diagonal block
Scale if necessary to avoid overflow in forming the
right-hand side element by inner product. */
xj = (d__1 = x[j1], abs(d__1));
if (xmax > 1.) {
rec = 1. / xmax;
if (work[j1] > (bignum - xj) * rec) {
igraphdscal_(n, &rec, &x[1], &c__1);
*scale *= rec;
xmax *= rec;
}
}
i__2 = j1 - 1;
x[j1] -= igraphddot_(&i__2, &t[j1 * t_dim1 + 1], &c__1, &x[1], &
c__1);
xj = (d__1 = x[j1], abs(d__1));
tjj = (d__1 = t[j1 + j1 * t_dim1], abs(d__1));
tmp = t[j1 + j1 * t_dim1];
if (tjj < smin) {
tmp = smin;
tjj = smin;
*info = 1;
}
if (tjj < 1.) {
if (xj > bignum * tjj) {
rec = 1. / xj;
igraphdscal_(n, &rec, &x[1], &c__1);
*scale *= rec;
xmax *= rec;
}
}
x[j1] /= tmp;
/* Computing MAX */
d__2 = xmax, d__3 = (d__1 = x[j1], abs(d__1));
xmax = max(d__2,d__3);
} else {
/* 2 by 2 diagonal block
Scale if necessary to avoid overflow in forming the
right-hand side elements by inner product.
Computing MAX */
d__3 = (d__1 = x[j1], abs(d__1)), d__4 = (d__2 = x[j2],
abs(d__2));
xj = max(d__3,d__4);
if (xmax > 1.) {
rec = 1. / xmax;
/* Computing MAX */
d__1 = work[j2], d__2 = work[j1];
if (max(d__1,d__2) > (bignum - xj) * rec) {
igraphdscal_(n, &rec, &x[1], &c__1);
*scale *= rec;
xmax *= rec;
}
}
i__2 = j1 - 1;
d__[0] = x[j1] - igraphddot_(&i__2, &t[j1 * t_dim1 + 1], &c__1,
&x[1], &c__1);
i__2 = j1 - 1;
d__[1] = x[j2] - igraphddot_(&i__2, &t[j2 * t_dim1 + 1], &c__1,
&x[1], &c__1);
igraphdlaln2_(&c_true, &c__2, &c__1, &smin, &c_b21, &t[j1 + j1 *
t_dim1], ldt, &c_b21, &c_b21, d__, &c__2, &c_b25,
&c_b25, v, &c__2, &scaloc, &xnorm, &ierr);
if (ierr != 0) {
*info = 2;
}
if (scaloc != 1.) {
igraphdscal_(n, &scaloc, &x[1], &c__1);
*scale *= scaloc;
}
x[j1] = v[0];
x[j2] = v[1];
/* Computing MAX */
d__3 = (d__1 = x[j1], abs(d__1)), d__4 = (d__2 = x[j2],
abs(d__2)), d__3 = max(d__3,d__4);
xmax = max(d__3,xmax);
}
L40:
;
}
}
} else {
/* Computing MAX */
d__1 = eps * abs(*w);
sminw = max(d__1,smin);
if (notran) {
/* Solve (T + iB)*(p+iq) = c+id */
jnext = *n;
for (j = *n; j >= 1; --j) {
if (j > jnext) {
goto L70;
}
j1 = j;
j2 = j;
jnext = j - 1;
if (j > 1) {
if (t[j + (j - 1) * t_dim1] != 0.) {
j1 = j - 1;
jnext = j - 2;
}
}
if (j1 == j2) {
/* 1 by 1 diagonal block
Scale if necessary to avoid overflow in division */
z__ = *w;
if (j1 == 1) {
z__ = b[1];
}
xj = (d__1 = x[j1], abs(d__1)) + (d__2 = x[*n + j1], abs(
d__2));
tjj = (d__1 = t[j1 + j1 * t_dim1], abs(d__1)) + abs(z__);
tmp = t[j1 + j1 * t_dim1];
if (tjj < sminw) {
tmp = sminw;
tjj = sminw;
*info = 1;
}
if (xj == 0.) {
goto L70;
}
if (tjj < 1.) {
if (xj > bignum * tjj) {
rec = 1. / xj;
igraphdscal_(&n2, &rec, &x[1], &c__1);
*scale *= rec;
xmax *= rec;
}
}
igraphdladiv_(&x[j1], &x[*n + j1], &tmp, &z__, &sr, &si);
x[j1] = sr;
x[*n + j1] = si;
xj = (d__1 = x[j1], abs(d__1)) + (d__2 = x[*n + j1], abs(
d__2));
/* Scale x if necessary to avoid overflow when adding a
multiple of column j1 of T. */
if (xj > 1.) {
rec = 1. / xj;
if (work[j1] > (bignum - xmax) * rec) {
igraphdscal_(&n2, &rec, &x[1], &c__1);
*scale *= rec;
}
}
if (j1 > 1) {
i__1 = j1 - 1;
d__1 = -x[j1];
igraphdaxpy_(&i__1, &d__1, &t[j1 * t_dim1 + 1], &c__1, &x[1]
, &c__1);
i__1 = j1 - 1;
d__1 = -x[*n + j1];
igraphdaxpy_(&i__1, &d__1, &t[j1 * t_dim1 + 1], &c__1, &x[*
n + 1], &c__1);
x[1] += b[j1] * x[*n + j1];
x[*n + 1] -= b[j1] * x[j1];
xmax = 0.;
i__1 = j1 - 1;
for (k = 1; k <= i__1; ++k) {
/* Computing MAX */
d__3 = xmax, d__4 = (d__1 = x[k], abs(d__1)) + (
d__2 = x[k + *n], abs(d__2));
xmax = max(d__3,d__4);
/* L50: */
}
}
} else {
/* Meet 2 by 2 diagonal block */
d__[0] = x[j1];
d__[1] = x[j2];
d__[2] = x[*n + j1];
d__[3] = x[*n + j2];
d__1 = -(*w);
igraphdlaln2_(&c_false, &c__2, &c__2, &sminw, &c_b21, &t[j1 +
j1 * t_dim1], ldt, &c_b21, &c_b21, d__, &c__2, &
c_b25, &d__1, v, &c__2, &scaloc, &xnorm, &ierr);
if (ierr != 0) {
*info = 2;
}
if (scaloc != 1.) {
i__1 = *n << 1;
igraphdscal_(&i__1, &scaloc, &x[1], &c__1);
*scale = scaloc * *scale;
}
x[j1] = v[0];
x[j2] = v[1];
x[*n + j1] = v[2];
x[*n + j2] = v[3];
/* Scale X(J1), .... to avoid overflow in
updating right hand side.
Computing MAX */
d__1 = abs(v[0]) + abs(v[2]), d__2 = abs(v[1]) + abs(v[3])
;
xj = max(d__1,d__2);
if (xj > 1.) {
rec = 1. / xj;
/* Computing MAX */
d__1 = work[j1], d__2 = work[j2];
if (max(d__1,d__2) > (bignum - xmax) * rec) {
igraphdscal_(&n2, &rec, &x[1], &c__1);
*scale *= rec;
}
}
/* Update the right-hand side. */
if (j1 > 1) {
i__1 = j1 - 1;
d__1 = -x[j1];
igraphdaxpy_(&i__1, &d__1, &t[j1 * t_dim1 + 1], &c__1, &x[1]
, &c__1);
i__1 = j1 - 1;
d__1 = -x[j2];
igraphdaxpy_(&i__1, &d__1, &t[j2 * t_dim1 + 1], &c__1, &x[1]
, &c__1);
i__1 = j1 - 1;
d__1 = -x[*n + j1];
igraphdaxpy_(&i__1, &d__1, &t[j1 * t_dim1 + 1], &c__1, &x[*
n + 1], &c__1);
i__1 = j1 - 1;
d__1 = -x[*n + j2];
igraphdaxpy_(&i__1, &d__1, &t[j2 * t_dim1 + 1], &c__1, &x[*
n + 1], &c__1);
x[1] = x[1] + b[j1] * x[*n + j1] + b[j2] * x[*n + j2];
x[*n + 1] = x[*n + 1] - b[j1] * x[j1] - b[j2] * x[j2];
xmax = 0.;
i__1 = j1 - 1;
for (k = 1; k <= i__1; ++k) {
/* Computing MAX */
d__3 = (d__1 = x[k], abs(d__1)) + (d__2 = x[k + *
n], abs(d__2));
xmax = max(d__3,xmax);
/* L60: */
}
}
}
L70:
;
}
} else {
/* Solve (T + iB)**T*(p+iq) = c+id */
jnext = 1;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
if (j < jnext) {
goto L80;
}
j1 = j;
j2 = j;
jnext = j + 1;
if (j < *n) {
if (t[j + 1 + j * t_dim1] != 0.) {
j2 = j + 1;
jnext = j + 2;
}
}
if (j1 == j2) {
/* 1 by 1 diagonal block
Scale if necessary to avoid overflow in forming the
right-hand side element by inner product. */
xj = (d__1 = x[j1], abs(d__1)) + (d__2 = x[j1 + *n], abs(
d__2));
if (xmax > 1.) {
rec = 1. / xmax;
if (work[j1] > (bignum - xj) * rec) {
igraphdscal_(&n2, &rec, &x[1], &c__1);
*scale *= rec;
xmax *= rec;
}
}
i__2 = j1 - 1;
x[j1] -= igraphddot_(&i__2, &t[j1 * t_dim1 + 1], &c__1, &x[1], &
c__1);
i__2 = j1 - 1;
x[*n + j1] -= igraphddot_(&i__2, &t[j1 * t_dim1 + 1], &c__1, &x[
*n + 1], &c__1);
if (j1 > 1) {
x[j1] -= b[j1] * x[*n + 1];
x[*n + j1] += b[j1] * x[1];
}
xj = (d__1 = x[j1], abs(d__1)) + (d__2 = x[j1 + *n], abs(
d__2));
z__ = *w;
if (j1 == 1) {
z__ = b[1];
}
/* Scale if necessary to avoid overflow in
complex division */
tjj = (d__1 = t[j1 + j1 * t_dim1], abs(d__1)) + abs(z__);
tmp = t[j1 + j1 * t_dim1];
if (tjj < sminw) {
tmp = sminw;
tjj = sminw;
*info = 1;
}
if (tjj < 1.) {
if (xj > bignum * tjj) {
rec = 1. / xj;
igraphdscal_(&n2, &rec, &x[1], &c__1);
*scale *= rec;
xmax *= rec;
}
}
d__1 = -z__;
igraphdladiv_(&x[j1], &x[*n + j1], &tmp, &d__1, &sr, &si);
x[j1] = sr;
x[j1 + *n] = si;
/* Computing MAX */
d__3 = (d__1 = x[j1], abs(d__1)) + (d__2 = x[j1 + *n],
abs(d__2));
xmax = max(d__3,xmax);
} else {
/* 2 by 2 diagonal block
Scale if necessary to avoid overflow in forming the
right-hand side element by inner product.
Computing MAX */
d__5 = (d__1 = x[j1], abs(d__1)) + (d__2 = x[*n + j1],
abs(d__2)), d__6 = (d__3 = x[j2], abs(d__3)) + (
d__4 = x[*n + j2], abs(d__4));
xj = max(d__5,d__6);
if (xmax > 1.) {
rec = 1. / xmax;
/* Computing MAX */
d__1 = work[j1], d__2 = work[j2];
if (max(d__1,d__2) > (bignum - xj) / xmax) {
igraphdscal_(&n2, &rec, &x[1], &c__1);
*scale *= rec;
xmax *= rec;
}
}
i__2 = j1 - 1;
d__[0] = x[j1] - igraphddot_(&i__2, &t[j1 * t_dim1 + 1], &c__1,
&x[1], &c__1);
i__2 = j1 - 1;
d__[1] = x[j2] - igraphddot_(&i__2, &t[j2 * t_dim1 + 1], &c__1,
&x[1], &c__1);
i__2 = j1 - 1;
d__[2] = x[*n + j1] - igraphddot_(&i__2, &t[j1 * t_dim1 + 1], &
c__1, &x[*n + 1], &c__1);
i__2 = j1 - 1;
d__[3] = x[*n + j2] - igraphddot_(&i__2, &t[j2 * t_dim1 + 1], &
c__1, &x[*n + 1], &c__1);
d__[0] -= b[j1] * x[*n + 1];
d__[1] -= b[j2] * x[*n + 1];
d__[2] += b[j1] * x[1];
d__[3] += b[j2] * x[1];
igraphdlaln2_(&c_true, &c__2, &c__2, &sminw, &c_b21, &t[j1 + j1
* t_dim1], ldt, &c_b21, &c_b21, d__, &c__2, &
c_b25, w, v, &c__2, &scaloc, &xnorm, &ierr);
if (ierr != 0) {
*info = 2;
}
if (scaloc != 1.) {
igraphdscal_(&n2, &scaloc, &x[1], &c__1);
*scale = scaloc * *scale;
}
x[j1] = v[0];
x[j2] = v[1];
x[*n + j1] = v[2];
x[*n + j2] = v[3];
/* Computing MAX */
d__5 = (d__1 = x[j1], abs(d__1)) + (d__2 = x[*n + j1],
abs(d__2)), d__6 = (d__3 = x[j2], abs(d__3)) + (
d__4 = x[*n + j2], abs(d__4)), d__5 = max(d__5,
d__6);
xmax = max(d__5,xmax);
}
L80:
;
}
}
}
return 0;
/* End of DLAQTR */
} /* igraphdlaqtr_ */