/* -- translated by f2c (version 20191129).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
/* > \brief \b DLAR1V computes the (scaled) r-th column of the inverse of the submatrix in rows b1 through bn
of the tridiagonal matrix LDLT - λI.
=========== DOCUMENTATION ===========
Online html documentation available at
http://www.netlib.org/lapack/explore-html/
> \htmlonly
> Download DLAR1V + dependencies
>
> [TGZ]
>
> [ZIP]
>
> [TXT]
> \endhtmlonly
Definition:
===========
SUBROUTINE DLAR1V( N, B1, BN, LAMBDA, D, L, LD, LLD,
PIVMIN, GAPTOL, Z, WANTNC, NEGCNT, ZTZ, MINGMA,
R, ISUPPZ, NRMINV, RESID, RQCORR, WORK )
LOGICAL WANTNC
INTEGER B1, BN, N, NEGCNT, R
DOUBLE PRECISION GAPTOL, LAMBDA, MINGMA, NRMINV, PIVMIN, RESID,
$ RQCORR, ZTZ
INTEGER ISUPPZ( * )
DOUBLE PRECISION D( * ), L( * ), LD( * ), LLD( * ),
$ WORK( * )
DOUBLE PRECISION Z( * )
> \par Purpose:
=============
>
> \verbatim
>
> DLAR1V computes the (scaled) r-th column of the inverse of
> the sumbmatrix in rows B1 through BN of the tridiagonal matrix
> L D L**T - sigma I. When sigma is close to an eigenvalue, the
> computed vector is an accurate eigenvector. Usually, r corresponds
> to the index where the eigenvector is largest in magnitude.
> The following steps accomplish this computation :
> (a) Stationary qd transform, L D L**T - sigma I = L(+) D(+) L(+)**T,
> (b) Progressive qd transform, L D L**T - sigma I = U(-) D(-) U(-)**T,
> (c) Computation of the diagonal elements of the inverse of
> L D L**T - sigma I by combining the above transforms, and choosing
> r as the index where the diagonal of the inverse is (one of the)
> largest in magnitude.
> (d) Computation of the (scaled) r-th column of the inverse using the
> twisted factorization obtained by combining the top part of the
> the stationary and the bottom part of the progressive transform.
> \endverbatim
Arguments:
==========
> \param[in] N
> \verbatim
> N is INTEGER
> The order of the matrix L D L**T.
> \endverbatim
>
> \param[in] B1
> \verbatim
> B1 is INTEGER
> First index of the submatrix of L D L**T.
> \endverbatim
>
> \param[in] BN
> \verbatim
> BN is INTEGER
> Last index of the submatrix of L D L**T.
> \endverbatim
>
> \param[in] LAMBDA
> \verbatim
> LAMBDA is DOUBLE PRECISION
> The shift. In order to compute an accurate eigenvector,
> LAMBDA should be a good approximation to an eigenvalue
> of L D L**T.
> \endverbatim
>
> \param[in] L
> \verbatim
> L is DOUBLE PRECISION array, dimension (N-1)
> The (n-1) subdiagonal elements of the unit bidiagonal matrix
> L, in elements 1 to N-1.
> \endverbatim
>
> \param[in] D
> \verbatim
> D is DOUBLE PRECISION array, dimension (N)
> The n diagonal elements of the diagonal matrix D.
> \endverbatim
>
> \param[in] LD
> \verbatim
> LD is DOUBLE PRECISION array, dimension (N-1)
> The n-1 elements L(i)*D(i).
> \endverbatim
>
> \param[in] LLD
> \verbatim
> LLD is DOUBLE PRECISION array, dimension (N-1)
> The n-1 elements L(i)*L(i)*D(i).
> \endverbatim
>
> \param[in] PIVMIN
> \verbatim
> PIVMIN is DOUBLE PRECISION
> The minimum pivot in the Sturm sequence.
> \endverbatim
>
> \param[in] GAPTOL
> \verbatim
> GAPTOL is DOUBLE PRECISION
> Tolerance that indicates when eigenvector entries are negligible
> w.r.t. their contribution to the residual.
> \endverbatim
>
> \param[in,out] Z
> \verbatim
> Z is DOUBLE PRECISION array, dimension (N)
> On input, all entries of Z must be set to 0.
> On output, Z contains the (scaled) r-th column of the
> inverse. The scaling is such that Z(R) equals 1.
> \endverbatim
>
> \param[in] WANTNC
> \verbatim
> WANTNC is LOGICAL
> Specifies whether NEGCNT has to be computed.
> \endverbatim
>
> \param[out] NEGCNT
> \verbatim
> NEGCNT is INTEGER
> If WANTNC is .TRUE. then NEGCNT = the number of pivots < pivmin
> in the matrix factorization L D L**T, and NEGCNT = -1 otherwise.
> \endverbatim
>
> \param[out] ZTZ
> \verbatim
> ZTZ is DOUBLE PRECISION
> The square of the 2-norm of Z.
> \endverbatim
>
> \param[out] MINGMA
> \verbatim
> MINGMA is DOUBLE PRECISION
> The reciprocal of the largest (in magnitude) diagonal
> element of the inverse of L D L**T - sigma I.
> \endverbatim
>
> \param[in,out] R
> \verbatim
> R is INTEGER
> The twist index for the twisted factorization used to
> compute Z.
> On input, 0 <= R <= N. If R is input as 0, R is set to
> the index where (L D L**T - sigma I)^{-1} is largest
> in magnitude. If 1 <= R <= N, R is unchanged.
> On output, R contains the twist index used to compute Z.
> Ideally, R designates the position of the maximum entry in the
> eigenvector.
> \endverbatim
>
> \param[out] ISUPPZ
> \verbatim
> ISUPPZ is INTEGER array, dimension (2)
> The support of the vector in Z, i.e., the vector Z is
> nonzero only in elements ISUPPZ(1) through ISUPPZ( 2 ).
> \endverbatim
>
> \param[out] NRMINV
> \verbatim
> NRMINV is DOUBLE PRECISION
> NRMINV = 1/SQRT( ZTZ )
> \endverbatim
>
> \param[out] RESID
> \verbatim
> RESID is DOUBLE PRECISION
> The residual of the FP vector.
> RESID = ABS( MINGMA )/SQRT( ZTZ )
> \endverbatim
>
> \param[out] RQCORR
> \verbatim
> RQCORR is DOUBLE PRECISION
> The Rayleigh Quotient correction to LAMBDA.
> RQCORR = MINGMA*TMP
> \endverbatim
>
> \param[out] WORK
> \verbatim
> WORK is DOUBLE PRECISION array, dimension (4*N)
> \endverbatim
Authors:
========
> \author Univ. of Tennessee
> \author Univ. of California Berkeley
> \author Univ. of Colorado Denver
> \author NAG Ltd.
> \date September 2012
> \ingroup doubleOTHERauxiliary
> \par Contributors:
==================
>
> Beresford Parlett, University of California, Berkeley, USA \n
> Jim Demmel, University of California, Berkeley, USA \n
> Inderjit Dhillon, University of Texas, Austin, USA \n
> Osni Marques, LBNL/NERSC, USA \n
> Christof Voemel, University of California, Berkeley, USA
=====================================================================
Subroutine */ int igraphdlar1v_(integer *n, integer *b1, integer *bn, doublereal
*lambda, doublereal *d__, doublereal *l, doublereal *ld, doublereal *
lld, doublereal *pivmin, doublereal *gaptol, doublereal *z__, logical
*wantnc, integer *negcnt, doublereal *ztz, doublereal *mingma,
integer *r__, integer *isuppz, doublereal *nrminv, doublereal *resid,
doublereal *rqcorr, doublereal *work)
{
/* System generated locals */
integer i__1;
doublereal d__1, d__2, d__3;
/* Builtin functions */
double sqrt(doublereal);
/* Local variables */
integer i__;
doublereal s;
integer r1, r2;
doublereal eps, tmp;
integer neg1, neg2, indp, inds;
doublereal dplus;
extern doublereal igraphdlamch_(char *);
extern logical igraphdisnan_(doublereal *);
integer indlpl, indumn;
doublereal dminus;
logical sawnan1, sawnan2;
/* -- LAPACK auxiliary routine (version 3.4.2) --
-- LAPACK is a software package provided by Univ. of Tennessee, --
-- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
September 2012
=====================================================================
Parameter adjustments */
--work;
--isuppz;
--z__;
--lld;
--ld;
--l;
--d__;
/* Function Body */
eps = igraphdlamch_("Precision");
if (*r__ == 0) {
r1 = *b1;
r2 = *bn;
} else {
r1 = *r__;
r2 = *r__;
}
/* Storage for LPLUS */
indlpl = 0;
/* Storage for UMINUS */
indumn = *n;
inds = (*n << 1) + 1;
indp = *n * 3 + 1;
if (*b1 == 1) {
work[inds] = 0.;
} else {
work[inds + *b1 - 1] = lld[*b1 - 1];
}
/* Compute the stationary transform (using the differential form)
until the index R2. */
sawnan1 = FALSE_;
neg1 = 0;
s = work[inds + *b1 - 1] - *lambda;
i__1 = r1 - 1;
for (i__ = *b1; i__ <= i__1; ++i__) {
dplus = d__[i__] + s;
work[indlpl + i__] = ld[i__] / dplus;
if (dplus < 0.) {
++neg1;
}
work[inds + i__] = s * work[indlpl + i__] * l[i__];
s = work[inds + i__] - *lambda;
/* L50: */
}
sawnan1 = igraphdisnan_(&s);
if (sawnan1) {
goto L60;
}
i__1 = r2 - 1;
for (i__ = r1; i__ <= i__1; ++i__) {
dplus = d__[i__] + s;
work[indlpl + i__] = ld[i__] / dplus;
work[inds + i__] = s * work[indlpl + i__] * l[i__];
s = work[inds + i__] - *lambda;
/* L51: */
}
sawnan1 = igraphdisnan_(&s);
L60:
if (sawnan1) {
/* Runs a slower version of the above loop if a NaN is detected */
neg1 = 0;
s = work[inds + *b1 - 1] - *lambda;
i__1 = r1 - 1;
for (i__ = *b1; i__ <= i__1; ++i__) {
dplus = d__[i__] + s;
if (abs(dplus) < *pivmin) {
dplus = -(*pivmin);
}
work[indlpl + i__] = ld[i__] / dplus;
if (dplus < 0.) {
++neg1;
}
work[inds + i__] = s * work[indlpl + i__] * l[i__];
if (work[indlpl + i__] == 0.) {
work[inds + i__] = lld[i__];
}
s = work[inds + i__] - *lambda;
/* L70: */
}
i__1 = r2 - 1;
for (i__ = r1; i__ <= i__1; ++i__) {
dplus = d__[i__] + s;
if (abs(dplus) < *pivmin) {
dplus = -(*pivmin);
}
work[indlpl + i__] = ld[i__] / dplus;
work[inds + i__] = s * work[indlpl + i__] * l[i__];
if (work[indlpl + i__] == 0.) {
work[inds + i__] = lld[i__];
}
s = work[inds + i__] - *lambda;
/* L71: */
}
}
/* Compute the progressive transform (using the differential form)
until the index R1 */
sawnan2 = FALSE_;
neg2 = 0;
work[indp + *bn - 1] = d__[*bn] - *lambda;
i__1 = r1;
for (i__ = *bn - 1; i__ >= i__1; --i__) {
dminus = lld[i__] + work[indp + i__];
tmp = d__[i__] / dminus;
if (dminus < 0.) {
++neg2;
}
work[indumn + i__] = l[i__] * tmp;
work[indp + i__ - 1] = work[indp + i__] * tmp - *lambda;
/* L80: */
}
tmp = work[indp + r1 - 1];
sawnan2 = igraphdisnan_(&tmp);
if (sawnan2) {
/* Runs a slower version of the above loop if a NaN is detected */
neg2 = 0;
i__1 = r1;
for (i__ = *bn - 1; i__ >= i__1; --i__) {
dminus = lld[i__] + work[indp + i__];
if (abs(dminus) < *pivmin) {
dminus = -(*pivmin);
}
tmp = d__[i__] / dminus;
if (dminus < 0.) {
++neg2;
}
work[indumn + i__] = l[i__] * tmp;
work[indp + i__ - 1] = work[indp + i__] * tmp - *lambda;
if (tmp == 0.) {
work[indp + i__ - 1] = d__[i__] - *lambda;
}
/* L100: */
}
}
/* Find the index (from R1 to R2) of the largest (in magnitude)
diagonal element of the inverse */
*mingma = work[inds + r1 - 1] + work[indp + r1 - 1];
if (*mingma < 0.) {
++neg1;
}
if (*wantnc) {
*negcnt = neg1 + neg2;
} else {
*negcnt = -1;
}
if (abs(*mingma) == 0.) {
*mingma = eps * work[inds + r1 - 1];
}
*r__ = r1;
i__1 = r2 - 1;
for (i__ = r1; i__ <= i__1; ++i__) {
tmp = work[inds + i__] + work[indp + i__];
if (tmp == 0.) {
tmp = eps * work[inds + i__];
}
if (abs(tmp) <= abs(*mingma)) {
*mingma = tmp;
*r__ = i__ + 1;
}
/* L110: */
}
/* Compute the FP vector: solve N^T v = e_r */
isuppz[1] = *b1;
isuppz[2] = *bn;
z__[*r__] = 1.;
*ztz = 1.;
/* Compute the FP vector upwards from R */
if (! sawnan1 && ! sawnan2) {
i__1 = *b1;
for (i__ = *r__ - 1; i__ >= i__1; --i__) {
z__[i__] = -(work[indlpl + i__] * z__[i__ + 1]);
if (((d__1 = z__[i__], abs(d__1)) + (d__2 = z__[i__ + 1], abs(
d__2))) * (d__3 = ld[i__], abs(d__3)) < *gaptol) {
z__[i__] = 0.;
isuppz[1] = i__ + 1;
goto L220;
}
*ztz += z__[i__] * z__[i__];
/* L210: */
}
L220:
;
} else {
/* Run slower loop if NaN occurred. */
i__1 = *b1;
for (i__ = *r__ - 1; i__ >= i__1; --i__) {
if (z__[i__ + 1] == 0.) {
z__[i__] = -(ld[i__ + 1] / ld[i__]) * z__[i__ + 2];
} else {
z__[i__] = -(work[indlpl + i__] * z__[i__ + 1]);
}
if (((d__1 = z__[i__], abs(d__1)) + (d__2 = z__[i__ + 1], abs(
d__2))) * (d__3 = ld[i__], abs(d__3)) < *gaptol) {
z__[i__] = 0.;
isuppz[1] = i__ + 1;
goto L240;
}
*ztz += z__[i__] * z__[i__];
/* L230: */
}
L240:
;
}
/* Compute the FP vector downwards from R in blocks of size BLKSIZ */
if (! sawnan1 && ! sawnan2) {
i__1 = *bn - 1;
for (i__ = *r__; i__ <= i__1; ++i__) {
z__[i__ + 1] = -(work[indumn + i__] * z__[i__]);
if (((d__1 = z__[i__], abs(d__1)) + (d__2 = z__[i__ + 1], abs(
d__2))) * (d__3 = ld[i__], abs(d__3)) < *gaptol) {
z__[i__ + 1] = 0.;
isuppz[2] = i__;
goto L260;
}
*ztz += z__[i__ + 1] * z__[i__ + 1];
/* L250: */
}
L260:
;
} else {
/* Run slower loop if NaN occurred. */
i__1 = *bn - 1;
for (i__ = *r__; i__ <= i__1; ++i__) {
if (z__[i__] == 0.) {
z__[i__ + 1] = -(ld[i__ - 1] / ld[i__]) * z__[i__ - 1];
} else {
z__[i__ + 1] = -(work[indumn + i__] * z__[i__]);
}
if (((d__1 = z__[i__], abs(d__1)) + (d__2 = z__[i__ + 1], abs(
d__2))) * (d__3 = ld[i__], abs(d__3)) < *gaptol) {
z__[i__ + 1] = 0.;
isuppz[2] = i__;
goto L280;
}
*ztz += z__[i__ + 1] * z__[i__ + 1];
/* L270: */
}
L280:
;
}
/* Compute quantities for convergence test */
tmp = 1. / *ztz;
*nrminv = sqrt(tmp);
*resid = abs(*mingma) * *nrminv;
*rqcorr = *mingma * tmp;
return 0;
/* End of DLAR1V */
} /* igraphdlar1v_ */