/* -- translated by f2c (version 20191129). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* > \brief \b DLARFG generates an elementary reflector (Householder matrix). =========== DOCUMENTATION =========== Online html documentation available at http://www.netlib.org/lapack/explore-html/ > \htmlonly > Download DLARFG + dependencies > > [TGZ] > > [ZIP] > > [TXT] > \endhtmlonly Definition: =========== SUBROUTINE DLARFG( N, ALPHA, X, INCX, TAU ) INTEGER INCX, N DOUBLE PRECISION ALPHA, TAU DOUBLE PRECISION X( * ) > \par Purpose: ============= > > \verbatim > > DLARFG generates a real elementary reflector H of order n, such > that > > H * ( alpha ) = ( beta ), H**T * H = I. > ( x ) ( 0 ) > > where alpha and beta are scalars, and x is an (n-1)-element real > vector. H is represented in the form > > H = I - tau * ( 1 ) * ( 1 v**T ) , > ( v ) > > where tau is a real scalar and v is a real (n-1)-element > vector. > > If the elements of x are all zero, then tau = 0 and H is taken to be > the unit matrix. > > Otherwise 1 <= tau <= 2. > \endverbatim Arguments: ========== > \param[in] N > \verbatim > N is INTEGER > The order of the elementary reflector. > \endverbatim > > \param[in,out] ALPHA > \verbatim > ALPHA is DOUBLE PRECISION > On entry, the value alpha. > On exit, it is overwritten with the value beta. > \endverbatim > > \param[in,out] X > \verbatim > X is DOUBLE PRECISION array, dimension > (1+(N-2)*abs(INCX)) > On entry, the vector x. > On exit, it is overwritten with the vector v. > \endverbatim > > \param[in] INCX > \verbatim > INCX is INTEGER > The increment between elements of X. INCX > 0. > \endverbatim > > \param[out] TAU > \verbatim > TAU is DOUBLE PRECISION > The value tau. > \endverbatim Authors: ======== > \author Univ. of Tennessee > \author Univ. of California Berkeley > \author Univ. of Colorado Denver > \author NAG Ltd. > \date September 2012 > \ingroup doubleOTHERauxiliary ===================================================================== Subroutine */ int igraphdlarfg_(integer *n, doublereal *alpha, doublereal *x, integer *incx, doublereal *tau) { /* System generated locals */ integer i__1; doublereal d__1; /* Builtin functions */ double d_sign(doublereal *, doublereal *); /* Local variables */ integer j, knt; doublereal beta; extern doublereal igraphdnrm2_(integer *, doublereal *, integer *); extern /* Subroutine */ int igraphdscal_(integer *, doublereal *, doublereal *, integer *); doublereal xnorm; extern doublereal igraphdlapy2_(doublereal *, doublereal *), igraphdlamch_(char *); doublereal safmin, rsafmn; /* -- LAPACK auxiliary routine (version 3.4.2) -- -- LAPACK is a software package provided by Univ. of Tennessee, -- -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- September 2012 ===================================================================== Parameter adjustments */ --x; /* Function Body */ if (*n <= 1) { *tau = 0.; return 0; } i__1 = *n - 1; xnorm = igraphdnrm2_(&i__1, &x[1], incx); if (xnorm == 0.) { /* H = I */ *tau = 0.; } else { /* general case */ d__1 = igraphdlapy2_(alpha, &xnorm); beta = -d_sign(&d__1, alpha); safmin = igraphdlamch_("S") / igraphdlamch_("E"); knt = 0; if (abs(beta) < safmin) { /* XNORM, BETA may be inaccurate; scale X and recompute them */ rsafmn = 1. / safmin; L10: ++knt; i__1 = *n - 1; igraphdscal_(&i__1, &rsafmn, &x[1], incx); beta *= rsafmn; *alpha *= rsafmn; if (abs(beta) < safmin) { goto L10; } /* New BETA is at most 1, at least SAFMIN */ i__1 = *n - 1; xnorm = igraphdnrm2_(&i__1, &x[1], incx); d__1 = igraphdlapy2_(alpha, &xnorm); beta = -d_sign(&d__1, alpha); } *tau = (beta - *alpha) / beta; i__1 = *n - 1; d__1 = 1. / (*alpha - beta); igraphdscal_(&i__1, &d__1, &x[1], incx); /* If ALPHA is subnormal, it may lose relative accuracy */ i__1 = knt; for (j = 1; j <= i__1; ++j) { beta *= safmin; /* L20: */ } *alpha = beta; } return 0; /* End of DLARFG */ } /* igraphdlarfg_ */