/* -- translated by f2c (version 20191129). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Table of constant values */ static integer c__1 = 1; static doublereal c_b7 = 1.; /* > \brief \b DLARFT forms the triangular factor T of a block reflector H = I - vtvH =========== DOCUMENTATION =========== Online html documentation available at http://www.netlib.org/lapack/explore-html/ > \htmlonly > Download DLARFT + dependencies > > [TGZ] > > [ZIP] > > [TXT] > \endhtmlonly Definition: =========== SUBROUTINE DLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT ) CHARACTER DIRECT, STOREV INTEGER K, LDT, LDV, N DOUBLE PRECISION T( LDT, * ), TAU( * ), V( LDV, * ) > \par Purpose: ============= > > \verbatim > > DLARFT forms the triangular factor T of a real block reflector H > of order n, which is defined as a product of k elementary reflectors. > > If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular; > > If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular. > > If STOREV = 'C', the vector which defines the elementary reflector > H(i) is stored in the i-th column of the array V, and > > H = I - V * T * V**T > > If STOREV = 'R', the vector which defines the elementary reflector > H(i) is stored in the i-th row of the array V, and > > H = I - V**T * T * V > \endverbatim Arguments: ========== > \param[in] DIRECT > \verbatim > DIRECT is CHARACTER*1 > Specifies the order in which the elementary reflectors are > multiplied to form the block reflector: > = 'F': H = H(1) H(2) . . . H(k) (Forward) > = 'B': H = H(k) . . . H(2) H(1) (Backward) > \endverbatim > > \param[in] STOREV > \verbatim > STOREV is CHARACTER*1 > Specifies how the vectors which define the elementary > reflectors are stored (see also Further Details): > = 'C': columnwise > = 'R': rowwise > \endverbatim > > \param[in] N > \verbatim > N is INTEGER > The order of the block reflector H. N >= 0. > \endverbatim > > \param[in] K > \verbatim > K is INTEGER > The order of the triangular factor T (= the number of > elementary reflectors). K >= 1. > \endverbatim > > \param[in] V > \verbatim > V is DOUBLE PRECISION array, dimension > (LDV,K) if STOREV = 'C' > (LDV,N) if STOREV = 'R' > The matrix V. See further details. > \endverbatim > > \param[in] LDV > \verbatim > LDV is INTEGER > The leading dimension of the array V. > If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K. > \endverbatim > > \param[in] TAU > \verbatim > TAU is DOUBLE PRECISION array, dimension (K) > TAU(i) must contain the scalar factor of the elementary > reflector H(i). > \endverbatim > > \param[out] T > \verbatim > T is DOUBLE PRECISION array, dimension (LDT,K) > The k by k triangular factor T of the block reflector. > If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is > lower triangular. The rest of the array is not used. > \endverbatim > > \param[in] LDT > \verbatim > LDT is INTEGER > The leading dimension of the array T. LDT >= K. > \endverbatim Authors: ======== > \author Univ. of Tennessee > \author Univ. of California Berkeley > \author Univ. of Colorado Denver > \author NAG Ltd. > \date September 2012 > \ingroup doubleOTHERauxiliary > \par Further Details: ===================== > > \verbatim > > The shape of the matrix V and the storage of the vectors which define > the H(i) is best illustrated by the following example with n = 5 and > k = 3. The elements equal to 1 are not stored. > > DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R': > > V = ( 1 ) V = ( 1 v1 v1 v1 v1 ) > ( v1 1 ) ( 1 v2 v2 v2 ) > ( v1 v2 1 ) ( 1 v3 v3 ) > ( v1 v2 v3 ) > ( v1 v2 v3 ) > > DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R': > > V = ( v1 v2 v3 ) V = ( v1 v1 1 ) > ( v1 v2 v3 ) ( v2 v2 v2 1 ) > ( 1 v2 v3 ) ( v3 v3 v3 v3 1 ) > ( 1 v3 ) > ( 1 ) > \endverbatim > ===================================================================== Subroutine */ int igraphdlarft_(char *direct, char *storev, integer *n, integer * k, doublereal *v, integer *ldv, doublereal *tau, doublereal *t, integer *ldt) { /* System generated locals */ integer t_dim1, t_offset, v_dim1, v_offset, i__1, i__2, i__3; doublereal d__1; /* Local variables */ integer i__, j, prevlastv; extern logical igraphlsame_(char *, char *); extern /* Subroutine */ int igraphdgemv_(char *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *); integer lastv; extern /* Subroutine */ int igraphdtrmv_(char *, char *, char *, integer *, doublereal *, integer *, doublereal *, integer *); /* -- LAPACK auxiliary routine (version 3.4.2) -- -- LAPACK is a software package provided by Univ. of Tennessee, -- -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- September 2012 ===================================================================== Quick return if possible Parameter adjustments */ v_dim1 = *ldv; v_offset = 1 + v_dim1; v -= v_offset; --tau; t_dim1 = *ldt; t_offset = 1 + t_dim1; t -= t_offset; /* Function Body */ if (*n == 0) { return 0; } if (igraphlsame_(direct, "F")) { prevlastv = *n; i__1 = *k; for (i__ = 1; i__ <= i__1; ++i__) { prevlastv = max(i__,prevlastv); if (tau[i__] == 0.) { /* H(i) = I */ i__2 = i__; for (j = 1; j <= i__2; ++j) { t[j + i__ * t_dim1] = 0.; } } else { /* general case */ if (igraphlsame_(storev, "C")) { /* Skip any trailing zeros. */ i__2 = i__ + 1; for (lastv = *n; lastv >= i__2; --lastv) { if (v[lastv + i__ * v_dim1] != 0.) { goto L11; } } L11: i__2 = i__ - 1; for (j = 1; j <= i__2; ++j) { t[j + i__ * t_dim1] = -tau[i__] * v[i__ + j * v_dim1]; } j = min(lastv,prevlastv); /* T(1:i-1,i) := - tau(i) * V(i:j,1:i-1)**T * V(i:j,i) */ i__2 = j - i__; i__3 = i__ - 1; d__1 = -tau[i__]; igraphdgemv_("Transpose", &i__2, &i__3, &d__1, &v[i__ + 1 + v_dim1], ldv, &v[i__ + 1 + i__ * v_dim1], &c__1, & c_b7, &t[i__ * t_dim1 + 1], &c__1); } else { /* Skip any trailing zeros. */ i__2 = i__ + 1; for (lastv = *n; lastv >= i__2; --lastv) { if (v[i__ + lastv * v_dim1] != 0.) { goto L21; } } L21: i__2 = i__ - 1; for (j = 1; j <= i__2; ++j) { t[j + i__ * t_dim1] = -tau[i__] * v[j + i__ * v_dim1]; } j = min(lastv,prevlastv); /* T(1:i-1,i) := - tau(i) * V(1:i-1,i:j) * V(i,i:j)**T */ i__2 = i__ - 1; i__3 = j - i__; d__1 = -tau[i__]; igraphdgemv_("No transpose", &i__2, &i__3, &d__1, &v[(i__ + 1) * v_dim1 + 1], ldv, &v[i__ + (i__ + 1) * v_dim1], ldv, &c_b7, &t[i__ * t_dim1 + 1], &c__1); } /* T(1:i-1,i) := T(1:i-1,1:i-1) * T(1:i-1,i) */ i__2 = i__ - 1; igraphdtrmv_("Upper", "No transpose", "Non-unit", &i__2, &t[ t_offset], ldt, &t[i__ * t_dim1 + 1], &c__1); t[i__ + i__ * t_dim1] = tau[i__]; if (i__ > 1) { prevlastv = max(prevlastv,lastv); } else { prevlastv = lastv; } } } } else { prevlastv = 1; for (i__ = *k; i__ >= 1; --i__) { if (tau[i__] == 0.) { /* H(i) = I */ i__1 = *k; for (j = i__; j <= i__1; ++j) { t[j + i__ * t_dim1] = 0.; } } else { /* general case */ if (i__ < *k) { if (igraphlsame_(storev, "C")) { /* Skip any leading zeros. */ i__1 = i__ - 1; for (lastv = 1; lastv <= i__1; ++lastv) { if (v[lastv + i__ * v_dim1] != 0.) { goto L31; } } L31: i__1 = *k; for (j = i__ + 1; j <= i__1; ++j) { t[j + i__ * t_dim1] = -tau[i__] * v[*n - *k + i__ + j * v_dim1]; } j = max(lastv,prevlastv); /* T(i+1:k,i) = -tau(i) * V(j:n-k+i,i+1:k)**T * V(j:n-k+i,i) */ i__1 = *n - *k + i__ - j; i__2 = *k - i__; d__1 = -tau[i__]; igraphdgemv_("Transpose", &i__1, &i__2, &d__1, &v[j + (i__ + 1) * v_dim1], ldv, &v[j + i__ * v_dim1], & c__1, &c_b7, &t[i__ + 1 + i__ * t_dim1], & c__1); } else { /* Skip any leading zeros. */ i__1 = i__ - 1; for (lastv = 1; lastv <= i__1; ++lastv) { if (v[i__ + lastv * v_dim1] != 0.) { goto L41; } } L41: i__1 = *k; for (j = i__ + 1; j <= i__1; ++j) { t[j + i__ * t_dim1] = -tau[i__] * v[j + (*n - *k + i__) * v_dim1]; } j = max(lastv,prevlastv); /* T(i+1:k,i) = -tau(i) * V(i+1:k,j:n-k+i) * V(i,j:n-k+i)**T */ i__1 = *k - i__; i__2 = *n - *k + i__ - j; d__1 = -tau[i__]; igraphdgemv_("No transpose", &i__1, &i__2, &d__1, &v[i__ + 1 + j * v_dim1], ldv, &v[i__ + j * v_dim1], ldv, &c_b7, &t[i__ + 1 + i__ * t_dim1], &c__1); } /* T(i+1:k,i) := T(i+1:k,i+1:k) * T(i+1:k,i) */ i__1 = *k - i__; igraphdtrmv_("Lower", "No transpose", "Non-unit", &i__1, &t[i__ + 1 + (i__ + 1) * t_dim1], ldt, &t[i__ + 1 + i__ * t_dim1], &c__1) ; if (i__ > 1) { prevlastv = min(prevlastv,lastv); } else { prevlastv = lastv; } } t[i__ + i__ * t_dim1] = tau[i__]; } } } return 0; /* End of DLARFT */ } /* igraphdlarft_ */