/* -- translated by f2c (version 20191129). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* > \brief \b DLARRC computes the number of eigenvalues of the symmetric tridiagonal matrix. =========== DOCUMENTATION =========== Online html documentation available at http://www.netlib.org/lapack/explore-html/ > \htmlonly > Download DLARRC + dependencies > > [TGZ] > > [ZIP] > > [TXT] > \endhtmlonly Definition: =========== SUBROUTINE DLARRC( JOBT, N, VL, VU, D, E, PIVMIN, EIGCNT, LCNT, RCNT, INFO ) CHARACTER JOBT INTEGER EIGCNT, INFO, LCNT, N, RCNT DOUBLE PRECISION PIVMIN, VL, VU DOUBLE PRECISION D( * ), E( * ) > \par Purpose: ============= > > \verbatim > > Find the number of eigenvalues of the symmetric tridiagonal matrix T > that are in the interval (VL,VU] if JOBT = 'T', and of L D L^T > if JOBT = 'L'. > \endverbatim Arguments: ========== > \param[in] JOBT > \verbatim > JOBT is CHARACTER*1 > = 'T': Compute Sturm count for matrix T. > = 'L': Compute Sturm count for matrix L D L^T. > \endverbatim > > \param[in] N > \verbatim > N is INTEGER > The order of the matrix. N > 0. > \endverbatim > > \param[in] VL > \verbatim > VL is DOUBLE PRECISION > \endverbatim > > \param[in] VU > \verbatim > VU is DOUBLE PRECISION > The lower and upper bounds for the eigenvalues. > \endverbatim > > \param[in] D > \verbatim > D is DOUBLE PRECISION array, dimension (N) > JOBT = 'T': The N diagonal elements of the tridiagonal matrix T. > JOBT = 'L': The N diagonal elements of the diagonal matrix D. > \endverbatim > > \param[in] E > \verbatim > E is DOUBLE PRECISION array, dimension (N) > JOBT = 'T': The N-1 offdiagonal elements of the matrix T. > JOBT = 'L': The N-1 offdiagonal elements of the matrix L. > \endverbatim > > \param[in] PIVMIN > \verbatim > PIVMIN is DOUBLE PRECISION > The minimum pivot in the Sturm sequence for T. > \endverbatim > > \param[out] EIGCNT > \verbatim > EIGCNT is INTEGER > The number of eigenvalues of the symmetric tridiagonal matrix T > that are in the interval (VL,VU] > \endverbatim > > \param[out] LCNT > \verbatim > LCNT is INTEGER > \endverbatim > > \param[out] RCNT > \verbatim > RCNT is INTEGER > The left and right negcounts of the interval. > \endverbatim > > \param[out] INFO > \verbatim > INFO is INTEGER > \endverbatim Authors: ======== > \author Univ. of Tennessee > \author Univ. of California Berkeley > \author Univ. of Colorado Denver > \author NAG Ltd. > \date September 2012 > \ingroup auxOTHERauxiliary > \par Contributors: ================== > > Beresford Parlett, University of California, Berkeley, USA \n > Jim Demmel, University of California, Berkeley, USA \n > Inderjit Dhillon, University of Texas, Austin, USA \n > Osni Marques, LBNL/NERSC, USA \n > Christof Voemel, University of California, Berkeley, USA ===================================================================== Subroutine */ int igraphdlarrc_(char *jobt, integer *n, doublereal *vl, doublereal *vu, doublereal *d__, doublereal *e, doublereal *pivmin, integer *eigcnt, integer *lcnt, integer *rcnt, integer *info) { /* System generated locals */ integer i__1; doublereal d__1; /* Local variables */ integer i__; doublereal sl, su, tmp, tmp2; logical matt; extern logical igraphlsame_(char *, char *); doublereal lpivot, rpivot; /* -- LAPACK auxiliary routine (version 3.4.2) -- -- LAPACK is a software package provided by Univ. of Tennessee, -- -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- September 2012 ===================================================================== Parameter adjustments */ --e; --d__; /* Function Body */ *info = 0; *lcnt = 0; *rcnt = 0; *eigcnt = 0; matt = igraphlsame_(jobt, "T"); if (matt) { /* Sturm sequence count on T */ lpivot = d__[1] - *vl; rpivot = d__[1] - *vu; if (lpivot <= 0.) { ++(*lcnt); } if (rpivot <= 0.) { ++(*rcnt); } i__1 = *n - 1; for (i__ = 1; i__ <= i__1; ++i__) { /* Computing 2nd power */ d__1 = e[i__]; tmp = d__1 * d__1; lpivot = d__[i__ + 1] - *vl - tmp / lpivot; rpivot = d__[i__ + 1] - *vu - tmp / rpivot; if (lpivot <= 0.) { ++(*lcnt); } if (rpivot <= 0.) { ++(*rcnt); } /* L10: */ } } else { /* Sturm sequence count on L D L^T */ sl = -(*vl); su = -(*vu); i__1 = *n - 1; for (i__ = 1; i__ <= i__1; ++i__) { lpivot = d__[i__] + sl; rpivot = d__[i__] + su; if (lpivot <= 0.) { ++(*lcnt); } if (rpivot <= 0.) { ++(*rcnt); } tmp = e[i__] * d__[i__] * e[i__]; tmp2 = tmp / lpivot; if (tmp2 == 0.) { sl = tmp - *vl; } else { sl = sl * tmp2 - *vl; } tmp2 = tmp / rpivot; if (tmp2 == 0.) { su = tmp - *vu; } else { su = su * tmp2 - *vu; } /* L20: */ } lpivot = d__[*n] + sl; rpivot = d__[*n] + su; if (lpivot <= 0.) { ++(*lcnt); } if (rpivot <= 0.) { ++(*rcnt); } } *eigcnt = *rcnt - *lcnt; return 0; /* end of DLARRC */ } /* igraphdlarrc_ */