/* -- translated by f2c (version 20191129).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
/* Table of constant values */
static integer c__1 = 1;
/* > \brief \b DLARRF finds a new relatively robust representation such that at least one of the eigenvalues i
s relatively isolated.
=========== DOCUMENTATION ===========
Online html documentation available at
http://www.netlib.org/lapack/explore-html/
> \htmlonly
> Download DLARRF + dependencies
>
> [TGZ]
>
> [ZIP]
>
> [TXT]
> \endhtmlonly
Definition:
===========
SUBROUTINE DLARRF( N, D, L, LD, CLSTRT, CLEND,
W, WGAP, WERR,
SPDIAM, CLGAPL, CLGAPR, PIVMIN, SIGMA,
DPLUS, LPLUS, WORK, INFO )
INTEGER CLSTRT, CLEND, INFO, N
DOUBLE PRECISION CLGAPL, CLGAPR, PIVMIN, SIGMA, SPDIAM
DOUBLE PRECISION D( * ), DPLUS( * ), L( * ), LD( * ),
$ LPLUS( * ), W( * ), WGAP( * ), WERR( * ), WORK( * )
> \par Purpose:
=============
>
> \verbatim
>
> Given the initial representation L D L^T and its cluster of close
> eigenvalues (in a relative measure), W( CLSTRT ), W( CLSTRT+1 ), ...
> W( CLEND ), DLARRF finds a new relatively robust representation
> L D L^T - SIGMA I = L(+) D(+) L(+)^T such that at least one of the
> eigenvalues of L(+) D(+) L(+)^T is relatively isolated.
> \endverbatim
Arguments:
==========
> \param[in] N
> \verbatim
> N is INTEGER
> The order of the matrix (subblock, if the matrix splitted).
> \endverbatim
>
> \param[in] D
> \verbatim
> D is DOUBLE PRECISION array, dimension (N)
> The N diagonal elements of the diagonal matrix D.
> \endverbatim
>
> \param[in] L
> \verbatim
> L is DOUBLE PRECISION array, dimension (N-1)
> The (N-1) subdiagonal elements of the unit bidiagonal
> matrix L.
> \endverbatim
>
> \param[in] LD
> \verbatim
> LD is DOUBLE PRECISION array, dimension (N-1)
> The (N-1) elements L(i)*D(i).
> \endverbatim
>
> \param[in] CLSTRT
> \verbatim
> CLSTRT is INTEGER
> The index of the first eigenvalue in the cluster.
> \endverbatim
>
> \param[in] CLEND
> \verbatim
> CLEND is INTEGER
> The index of the last eigenvalue in the cluster.
> \endverbatim
>
> \param[in] W
> \verbatim
> W is DOUBLE PRECISION array, dimension
> dimension is >= (CLEND-CLSTRT+1)
> The eigenvalue APPROXIMATIONS of L D L^T in ascending order.
> W( CLSTRT ) through W( CLEND ) form the cluster of relatively
> close eigenalues.
> \endverbatim
>
> \param[in,out] WGAP
> \verbatim
> WGAP is DOUBLE PRECISION array, dimension
> dimension is >= (CLEND-CLSTRT+1)
> The separation from the right neighbor eigenvalue in W.
> \endverbatim
>
> \param[in] WERR
> \verbatim
> WERR is DOUBLE PRECISION array, dimension
> dimension is >= (CLEND-CLSTRT+1)
> WERR contain the semiwidth of the uncertainty
> interval of the corresponding eigenvalue APPROXIMATION in W
> \endverbatim
>
> \param[in] SPDIAM
> \verbatim
> SPDIAM is DOUBLE PRECISION
> estimate of the spectral diameter obtained from the
> Gerschgorin intervals
> \endverbatim
>
> \param[in] CLGAPL
> \verbatim
> CLGAPL is DOUBLE PRECISION
> \endverbatim
>
> \param[in] CLGAPR
> \verbatim
> CLGAPR is DOUBLE PRECISION
> absolute gap on each end of the cluster.
> Set by the calling routine to protect against shifts too close
> to eigenvalues outside the cluster.
> \endverbatim
>
> \param[in] PIVMIN
> \verbatim
> PIVMIN is DOUBLE PRECISION
> The minimum pivot allowed in the Sturm sequence.
> \endverbatim
>
> \param[out] SIGMA
> \verbatim
> SIGMA is DOUBLE PRECISION
> The shift used to form L(+) D(+) L(+)^T.
> \endverbatim
>
> \param[out] DPLUS
> \verbatim
> DPLUS is DOUBLE PRECISION array, dimension (N)
> The N diagonal elements of the diagonal matrix D(+).
> \endverbatim
>
> \param[out] LPLUS
> \verbatim
> LPLUS is DOUBLE PRECISION array, dimension (N-1)
> The first (N-1) elements of LPLUS contain the subdiagonal
> elements of the unit bidiagonal matrix L(+).
> \endverbatim
>
> \param[out] WORK
> \verbatim
> WORK is DOUBLE PRECISION array, dimension (2*N)
> Workspace.
> \endverbatim
>
> \param[out] INFO
> \verbatim
> INFO is INTEGER
> Signals processing OK (=0) or failure (=1)
> \endverbatim
Authors:
========
> \author Univ. of Tennessee
> \author Univ. of California Berkeley
> \author Univ. of Colorado Denver
> \author NAG Ltd.
> \date September 2012
> \ingroup auxOTHERauxiliary
> \par Contributors:
==================
>
> Beresford Parlett, University of California, Berkeley, USA \n
> Jim Demmel, University of California, Berkeley, USA \n
> Inderjit Dhillon, University of Texas, Austin, USA \n
> Osni Marques, LBNL/NERSC, USA \n
> Christof Voemel, University of California, Berkeley, USA
=====================================================================
Subroutine */ int igraphdlarrf_(integer *n, doublereal *d__, doublereal *l,
doublereal *ld, integer *clstrt, integer *clend, doublereal *w,
doublereal *wgap, doublereal *werr, doublereal *spdiam, doublereal *
clgapl, doublereal *clgapr, doublereal *pivmin, doublereal *sigma,
doublereal *dplus, doublereal *lplus, doublereal *work, integer *info)
{
/* System generated locals */
integer i__1;
doublereal d__1, d__2, d__3;
/* Builtin functions */
double sqrt(doublereal);
/* Local variables */
integer i__;
doublereal s, bestshift, smlgrowth, eps, tmp, max1, max2, rrr1, rrr2,
znm2, growthbound, fail, fact, oldp;
integer indx;
doublereal prod;
integer ktry;
doublereal fail2, avgap, ldmax, rdmax;
integer shift;
extern /* Subroutine */ int igraphdcopy_(integer *, doublereal *, integer *,
doublereal *, integer *);
logical dorrr1;
extern doublereal igraphdlamch_(char *);
doublereal ldelta;
logical nofail;
doublereal mingap, lsigma, rdelta;
extern logical igraphdisnan_(doublereal *);
logical forcer;
doublereal rsigma, clwdth;
logical sawnan1, sawnan2, tryrrr1;
/* -- LAPACK auxiliary routine (version 3.4.2) --
-- LAPACK is a software package provided by Univ. of Tennessee, --
-- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
September 2012
=====================================================================
Parameter adjustments */
--work;
--lplus;
--dplus;
--werr;
--wgap;
--w;
--ld;
--l;
--d__;
/* Function Body */
*info = 0;
fact = 2.;
eps = igraphdlamch_("Precision");
shift = 0;
forcer = FALSE_;
/* Note that we cannot guarantee that for any of the shifts tried,
the factorization has a small or even moderate element growth.
There could be Ritz values at both ends of the cluster and despite
backing off, there are examples where all factorizations tried
(in IEEE mode, allowing zero pivots & infinities) have INFINITE
element growth.
For this reason, we should use PIVMIN in this subroutine so that at
least the L D L^T factorization exists. It can be checked afterwards
whether the element growth caused bad residuals/orthogonality.
Decide whether the code should accept the best among all
representations despite large element growth or signal INFO=1 */
nofail = TRUE_;
/* Compute the average gap length of the cluster */
clwdth = (d__1 = w[*clend] - w[*clstrt], abs(d__1)) + werr[*clend] + werr[
*clstrt];
avgap = clwdth / (doublereal) (*clend - *clstrt);
mingap = min(*clgapl,*clgapr);
/* Initial values for shifts to both ends of cluster
Computing MIN */
d__1 = w[*clstrt], d__2 = w[*clend];
lsigma = min(d__1,d__2) - werr[*clstrt];
/* Computing MAX */
d__1 = w[*clstrt], d__2 = w[*clend];
rsigma = max(d__1,d__2) + werr[*clend];
/* Use a small fudge to make sure that we really shift to the outside */
lsigma -= abs(lsigma) * 4. * eps;
rsigma += abs(rsigma) * 4. * eps;
/* Compute upper bounds for how much to back off the initial shifts */
ldmax = mingap * .25 + *pivmin * 2.;
rdmax = mingap * .25 + *pivmin * 2.;
/* Computing MAX */
d__1 = avgap, d__2 = wgap[*clstrt];
ldelta = max(d__1,d__2) / fact;
/* Computing MAX */
d__1 = avgap, d__2 = wgap[*clend - 1];
rdelta = max(d__1,d__2) / fact;
/* Initialize the record of the best representation found */
s = igraphdlamch_("S");
smlgrowth = 1. / s;
fail = (doublereal) (*n - 1) * mingap / (*spdiam * eps);
fail2 = (doublereal) (*n - 1) * mingap / (*spdiam * sqrt(eps));
bestshift = lsigma;
/* while (KTRY <= KTRYMAX) */
ktry = 0;
growthbound = *spdiam * 8.;
L5:
sawnan1 = FALSE_;
sawnan2 = FALSE_;
/* Ensure that we do not back off too much of the initial shifts */
ldelta = min(ldmax,ldelta);
rdelta = min(rdmax,rdelta);
/* Compute the element growth when shifting to both ends of the cluster
accept the shift if there is no element growth at one of the two ends
Left end */
s = -lsigma;
dplus[1] = d__[1] + s;
if (abs(dplus[1]) < *pivmin) {
dplus[1] = -(*pivmin);
/* Need to set SAWNAN1 because refined RRR test should not be used
in this case */
sawnan1 = TRUE_;
}
max1 = abs(dplus[1]);
i__1 = *n - 1;
for (i__ = 1; i__ <= i__1; ++i__) {
lplus[i__] = ld[i__] / dplus[i__];
s = s * lplus[i__] * l[i__] - lsigma;
dplus[i__ + 1] = d__[i__ + 1] + s;
if ((d__1 = dplus[i__ + 1], abs(d__1)) < *pivmin) {
dplus[i__ + 1] = -(*pivmin);
/* Need to set SAWNAN1 because refined RRR test should not be used
in this case */
sawnan1 = TRUE_;
}
/* Computing MAX */
d__2 = max1, d__3 = (d__1 = dplus[i__ + 1], abs(d__1));
max1 = max(d__2,d__3);
/* L6: */
}
sawnan1 = sawnan1 || igraphdisnan_(&max1);
if (forcer || max1 <= growthbound && ! sawnan1) {
*sigma = lsigma;
shift = 1;
goto L100;
}
/* Right end */
s = -rsigma;
work[1] = d__[1] + s;
if (abs(work[1]) < *pivmin) {
work[1] = -(*pivmin);
/* Need to set SAWNAN2 because refined RRR test should not be used
in this case */
sawnan2 = TRUE_;
}
max2 = abs(work[1]);
i__1 = *n - 1;
for (i__ = 1; i__ <= i__1; ++i__) {
work[*n + i__] = ld[i__] / work[i__];
s = s * work[*n + i__] * l[i__] - rsigma;
work[i__ + 1] = d__[i__ + 1] + s;
if ((d__1 = work[i__ + 1], abs(d__1)) < *pivmin) {
work[i__ + 1] = -(*pivmin);
/* Need to set SAWNAN2 because refined RRR test should not be used
in this case */
sawnan2 = TRUE_;
}
/* Computing MAX */
d__2 = max2, d__3 = (d__1 = work[i__ + 1], abs(d__1));
max2 = max(d__2,d__3);
/* L7: */
}
sawnan2 = sawnan2 || igraphdisnan_(&max2);
if (forcer || max2 <= growthbound && ! sawnan2) {
*sigma = rsigma;
shift = 2;
goto L100;
}
/* If we are at this point, both shifts led to too much element growth
Record the better of the two shifts (provided it didn't lead to NaN) */
if (sawnan1 && sawnan2) {
/* both MAX1 and MAX2 are NaN */
goto L50;
} else {
if (! sawnan1) {
indx = 1;
if (max1 <= smlgrowth) {
smlgrowth = max1;
bestshift = lsigma;
}
}
if (! sawnan2) {
if (sawnan1 || max2 <= max1) {
indx = 2;
}
if (max2 <= smlgrowth) {
smlgrowth = max2;
bestshift = rsigma;
}
}
}
/* If we are here, both the left and the right shift led to
element growth. If the element growth is moderate, then
we may still accept the representation, if it passes a
refined test for RRR. This test supposes that no NaN occurred.
Moreover, we use the refined RRR test only for isolated clusters. */
if (clwdth < mingap / 128. && min(max1,max2) < fail2 && ! sawnan1 && !
sawnan2) {
dorrr1 = TRUE_;
} else {
dorrr1 = FALSE_;
}
tryrrr1 = TRUE_;
if (tryrrr1 && dorrr1) {
if (indx == 1) {
tmp = (d__1 = dplus[*n], abs(d__1));
znm2 = 1.;
prod = 1.;
oldp = 1.;
for (i__ = *n - 1; i__ >= 1; --i__) {
if (prod <= eps) {
prod = dplus[i__ + 1] * work[*n + i__ + 1] / (dplus[i__] *
work[*n + i__]) * oldp;
} else {
prod *= (d__1 = work[*n + i__], abs(d__1));
}
oldp = prod;
/* Computing 2nd power */
d__1 = prod;
znm2 += d__1 * d__1;
/* Computing MAX */
d__2 = tmp, d__3 = (d__1 = dplus[i__] * prod, abs(d__1));
tmp = max(d__2,d__3);
/* L15: */
}
rrr1 = tmp / (*spdiam * sqrt(znm2));
if (rrr1 <= 8.) {
*sigma = lsigma;
shift = 1;
goto L100;
}
} else if (indx == 2) {
tmp = (d__1 = work[*n], abs(d__1));
znm2 = 1.;
prod = 1.;
oldp = 1.;
for (i__ = *n - 1; i__ >= 1; --i__) {
if (prod <= eps) {
prod = work[i__ + 1] * lplus[i__ + 1] / (work[i__] *
lplus[i__]) * oldp;
} else {
prod *= (d__1 = lplus[i__], abs(d__1));
}
oldp = prod;
/* Computing 2nd power */
d__1 = prod;
znm2 += d__1 * d__1;
/* Computing MAX */
d__2 = tmp, d__3 = (d__1 = work[i__] * prod, abs(d__1));
tmp = max(d__2,d__3);
/* L16: */
}
rrr2 = tmp / (*spdiam * sqrt(znm2));
if (rrr2 <= 8.) {
*sigma = rsigma;
shift = 2;
goto L100;
}
}
}
L50:
if (ktry < 1) {
/* If we are here, both shifts failed also the RRR test.
Back off to the outside
Computing MAX */
d__1 = lsigma - ldelta, d__2 = lsigma - ldmax;
lsigma = max(d__1,d__2);
/* Computing MIN */
d__1 = rsigma + rdelta, d__2 = rsigma + rdmax;
rsigma = min(d__1,d__2);
ldelta *= 2.;
rdelta *= 2.;
++ktry;
goto L5;
} else {
/* None of the representations investigated satisfied our
criteria. Take the best one we found. */
if (smlgrowth < fail || nofail) {
lsigma = bestshift;
rsigma = bestshift;
forcer = TRUE_;
goto L5;
} else {
*info = 1;
return 0;
}
}
L100:
if (shift == 1) {
} else if (shift == 2) {
/* store new L and D back into DPLUS, LPLUS */
igraphdcopy_(n, &work[1], &c__1, &dplus[1], &c__1);
i__1 = *n - 1;
igraphdcopy_(&i__1, &work[*n + 1], &c__1, &lplus[1], &c__1);
}
return 0;
/* End of DLARRF */
} /* igraphdlarrf_ */