/* -- translated by f2c (version 20191129). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* > \brief \b DLARRK computes one eigenvalue of a symmetric tridiagonal matrix T to suitable accuracy. =========== DOCUMENTATION =========== Online html documentation available at http://www.netlib.org/lapack/explore-html/ > \htmlonly > Download DLARRK + dependencies > > [TGZ] > > [ZIP] > > [TXT] > \endhtmlonly Definition: =========== SUBROUTINE DLARRK( N, IW, GL, GU, D, E2, PIVMIN, RELTOL, W, WERR, INFO) INTEGER INFO, IW, N DOUBLE PRECISION PIVMIN, RELTOL, GL, GU, W, WERR DOUBLE PRECISION D( * ), E2( * ) > \par Purpose: ============= > > \verbatim > > DLARRK computes one eigenvalue of a symmetric tridiagonal > matrix T to suitable accuracy. This is an auxiliary code to be > called from DSTEMR. > > To avoid overflow, the matrix must be scaled so that its > largest element is no greater than overflow**(1/2) * underflow**(1/4) in absolute value, and for greatest > accuracy, it should not be much smaller than that. > > See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal > Matrix", Report CS41, Computer Science Dept., Stanford > University, July 21, 1966. > \endverbatim Arguments: ========== > \param[in] N > \verbatim > N is INTEGER > The order of the tridiagonal matrix T. N >= 0. > \endverbatim > > \param[in] IW > \verbatim > IW is INTEGER > The index of the eigenvalues to be returned. > \endverbatim > > \param[in] GL > \verbatim > GL is DOUBLE PRECISION > \endverbatim > > \param[in] GU > \verbatim > GU is DOUBLE PRECISION > An upper and a lower bound on the eigenvalue. > \endverbatim > > \param[in] D > \verbatim > D is DOUBLE PRECISION array, dimension (N) > The n diagonal elements of the tridiagonal matrix T. > \endverbatim > > \param[in] E2 > \verbatim > E2 is DOUBLE PRECISION array, dimension (N-1) > The (n-1) squared off-diagonal elements of the tridiagonal matrix T. > \endverbatim > > \param[in] PIVMIN > \verbatim > PIVMIN is DOUBLE PRECISION > The minimum pivot allowed in the Sturm sequence for T. > \endverbatim > > \param[in] RELTOL > \verbatim > RELTOL is DOUBLE PRECISION > The minimum relative width of an interval. When an interval > is narrower than RELTOL times the larger (in > magnitude) endpoint, then it is considered to be > sufficiently small, i.e., converged. Note: this should > always be at least radix*machine epsilon. > \endverbatim > > \param[out] W > \verbatim > W is DOUBLE PRECISION > \endverbatim > > \param[out] WERR > \verbatim > WERR is DOUBLE PRECISION > The error bound on the corresponding eigenvalue approximation > in W. > \endverbatim > > \param[out] INFO > \verbatim > INFO is INTEGER > = 0: Eigenvalue converged > = -1: Eigenvalue did NOT converge > \endverbatim > \par Internal Parameters: ========================= > > \verbatim > FUDGE DOUBLE PRECISION, default = 2 > A "fudge factor" to widen the Gershgorin intervals. > \endverbatim Authors: ======== > \author Univ. of Tennessee > \author Univ. of California Berkeley > \author Univ. of Colorado Denver > \author NAG Ltd. > \date September 2012 > \ingroup auxOTHERauxiliary ===================================================================== Subroutine */ int igraphdlarrk_(integer *n, integer *iw, doublereal *gl, doublereal *gu, doublereal *d__, doublereal *e2, doublereal *pivmin, doublereal *reltol, doublereal *w, doublereal *werr, integer *info) { /* System generated locals */ integer i__1; doublereal d__1, d__2; /* Builtin functions */ double log(doublereal); /* Local variables */ integer i__, it; doublereal mid, eps, tmp1, tmp2, left, atoli, right; integer itmax; doublereal rtoli, tnorm; extern doublereal igraphdlamch_(char *); integer negcnt; /* -- LAPACK auxiliary routine (version 3.4.2) -- -- LAPACK is a software package provided by Univ. of Tennessee, -- -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- September 2012 ===================================================================== Get machine constants Parameter adjustments */ --e2; --d__; /* Function Body */ eps = igraphdlamch_("P"); /* Computing MAX */ d__1 = abs(*gl), d__2 = abs(*gu); tnorm = max(d__1,d__2); rtoli = *reltol; atoli = *pivmin * 4.; itmax = (integer) ((log(tnorm + *pivmin) - log(*pivmin)) / log(2.)) + 2; *info = -1; left = *gl - tnorm * 2. * eps * *n - *pivmin * 4.; right = *gu + tnorm * 2. * eps * *n + *pivmin * 4.; it = 0; L10: /* Check if interval converged or maximum number of iterations reached */ tmp1 = (d__1 = right - left, abs(d__1)); /* Computing MAX */ d__1 = abs(right), d__2 = abs(left); tmp2 = max(d__1,d__2); /* Computing MAX */ d__1 = max(atoli,*pivmin), d__2 = rtoli * tmp2; if (tmp1 < max(d__1,d__2)) { *info = 0; goto L30; } if (it > itmax) { goto L30; } /* Count number of negative pivots for mid-point */ ++it; mid = (left + right) * .5; negcnt = 0; tmp1 = d__[1] - mid; if (abs(tmp1) < *pivmin) { tmp1 = -(*pivmin); } if (tmp1 <= 0.) { ++negcnt; } i__1 = *n; for (i__ = 2; i__ <= i__1; ++i__) { tmp1 = d__[i__] - e2[i__ - 1] / tmp1 - mid; if (abs(tmp1) < *pivmin) { tmp1 = -(*pivmin); } if (tmp1 <= 0.) { ++negcnt; } /* L20: */ } if (negcnt >= *iw) { right = mid; } else { left = mid; } goto L10; L30: /* Converged or maximum number of iterations reached */ *w = (left + right) * .5; *werr = (d__1 = right - left, abs(d__1)) * .5; return 0; /* End of DLARRK */ } /* igraphdlarrk_ */