/* -- translated by f2c (version 20191129). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* > \brief \b DLARRR performs tests to decide whether the symmetric tridiagonal matrix T warrants expensive c omputations which guarantee high relative accuracy in the eigenvalues. =========== DOCUMENTATION =========== Online html documentation available at http://www.netlib.org/lapack/explore-html/ > \htmlonly > Download DLARRR + dependencies > > [TGZ] > > [ZIP] > > [TXT] > \endhtmlonly Definition: =========== SUBROUTINE DLARRR( N, D, E, INFO ) INTEGER N, INFO DOUBLE PRECISION D( * ), E( * ) > \par Purpose: ============= > > \verbatim > > Perform tests to decide whether the symmetric tridiagonal matrix T > warrants expensive computations which guarantee high relative accuracy > in the eigenvalues. > \endverbatim Arguments: ========== > \param[in] N > \verbatim > N is INTEGER > The order of the matrix. N > 0. > \endverbatim > > \param[in] D > \verbatim > D is DOUBLE PRECISION array, dimension (N) > The N diagonal elements of the tridiagonal matrix T. > \endverbatim > > \param[in,out] E > \verbatim > E is DOUBLE PRECISION array, dimension (N) > On entry, the first (N-1) entries contain the subdiagonal > elements of the tridiagonal matrix T; E(N) is set to ZERO. > \endverbatim > > \param[out] INFO > \verbatim > INFO is INTEGER > INFO = 0(default) : the matrix warrants computations preserving > relative accuracy. > INFO = 1 : the matrix warrants computations guaranteeing > only absolute accuracy. > \endverbatim Authors: ======== > \author Univ. of Tennessee > \author Univ. of California Berkeley > \author Univ. of Colorado Denver > \author NAG Ltd. > \date September 2012 > \ingroup auxOTHERauxiliary > \par Contributors: ================== > > Beresford Parlett, University of California, Berkeley, USA \n > Jim Demmel, University of California, Berkeley, USA \n > Inderjit Dhillon, University of Texas, Austin, USA \n > Osni Marques, LBNL/NERSC, USA \n > Christof Voemel, University of California, Berkeley, USA ===================================================================== Subroutine */ int igraphdlarrr_(integer *n, doublereal *d__, doublereal *e, integer *info) { /* System generated locals */ integer i__1; doublereal d__1; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ integer i__; doublereal eps, tmp, tmp2, rmin; extern doublereal igraphdlamch_(char *); doublereal offdig, safmin; logical yesrel; doublereal smlnum, offdig2; /* -- LAPACK auxiliary routine (version 3.4.2) -- -- LAPACK is a software package provided by Univ. of Tennessee, -- -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- September 2012 ===================================================================== As a default, do NOT go for relative-accuracy preserving computations. Parameter adjustments */ --e; --d__; /* Function Body */ *info = 1; safmin = igraphdlamch_("Safe minimum"); eps = igraphdlamch_("Precision"); smlnum = safmin / eps; rmin = sqrt(smlnum); /* Tests for relative accuracy Test for scaled diagonal dominance Scale the diagonal entries to one and check whether the sum of the off-diagonals is less than one The sdd relative error bounds have a 1/(1- 2*x) factor in them, x = max(OFFDIG + OFFDIG2), so when x is close to 1/2, no relative accuracy is promised. In the notation of the code fragment below, 1/(1 - (OFFDIG + OFFDIG2)) is the condition number. We don't think it is worth going into "sdd mode" unless the relative condition number is reasonable, not 1/macheps. The threshold should be compatible with other thresholds used in the code. We set OFFDIG + OFFDIG2 <= .999 =: RELCOND, it corresponds to losing at most 3 decimal digits: 1 / (1 - (OFFDIG + OFFDIG2)) <= 1000 instead of the current OFFDIG + OFFDIG2 < 1 */ yesrel = TRUE_; offdig = 0.; tmp = sqrt((abs(d__[1]))); if (tmp < rmin) { yesrel = FALSE_; } if (! yesrel) { goto L11; } i__1 = *n; for (i__ = 2; i__ <= i__1; ++i__) { tmp2 = sqrt((d__1 = d__[i__], abs(d__1))); if (tmp2 < rmin) { yesrel = FALSE_; } if (! yesrel) { goto L11; } offdig2 = (d__1 = e[i__ - 1], abs(d__1)) / (tmp * tmp2); if (offdig + offdig2 >= .999) { yesrel = FALSE_; } if (! yesrel) { goto L11; } tmp = tmp2; offdig = offdig2; /* L10: */ } L11: if (yesrel) { *info = 0; return 0; } else { } /* *** MORE TO BE IMPLEMENTED *** Test if the lower bidiagonal matrix L from T = L D L^T (zero shift facto) is well conditioned Test if the upper bidiagonal matrix U from T = U D U^T (zero shift facto) is well conditioned. In this case, the matrix needs to be flipped and, at the end of the eigenvector computation, the flip needs to be applied to the computed eigenvectors (and the support) */ return 0; /* END OF DLARRR */ } /* igraphdlarrr_ */