/* -- translated by f2c (version 20191129). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* > \brief \b DLARTG generates a plane rotation with real cosine and real sine. =========== DOCUMENTATION =========== Online html documentation available at http://www.netlib.org/lapack/explore-html/ > \htmlonly > Download DLARTG + dependencies > > [TGZ] > > [ZIP] > > [TXT] > \endhtmlonly Definition: =========== SUBROUTINE DLARTG( F, G, CS, SN, R ) DOUBLE PRECISION CS, F, G, R, SN > \par Purpose: ============= > > \verbatim > > DLARTG generate a plane rotation so that > > [ CS SN ] . [ F ] = [ R ] where CS**2 + SN**2 = 1. > [ -SN CS ] [ G ] [ 0 ] > > This is a slower, more accurate version of the BLAS1 routine DROTG, > with the following other differences: > F and G are unchanged on return. > If G=0, then CS=1 and SN=0. > If F=0 and (G .ne. 0), then CS=0 and SN=1 without doing any > floating point operations (saves work in DBDSQR when > there are zeros on the diagonal). > > If F exceeds G in magnitude, CS will be positive. > \endverbatim Arguments: ========== > \param[in] F > \verbatim > F is DOUBLE PRECISION > The first component of vector to be rotated. > \endverbatim > > \param[in] G > \verbatim > G is DOUBLE PRECISION > The second component of vector to be rotated. > \endverbatim > > \param[out] CS > \verbatim > CS is DOUBLE PRECISION > The cosine of the rotation. > \endverbatim > > \param[out] SN > \verbatim > SN is DOUBLE PRECISION > The sine of the rotation. > \endverbatim > > \param[out] R > \verbatim > R is DOUBLE PRECISION > The nonzero component of the rotated vector. > > This version has a few statements commented out for thread safety > (machine parameters are computed on each entry). 10 feb 03, SJH. > \endverbatim Authors: ======== > \author Univ. of Tennessee > \author Univ. of California Berkeley > \author Univ. of Colorado Denver > \author NAG Ltd. > \date September 2012 > \ingroup auxOTHERauxiliary ===================================================================== Subroutine */ int igraphdlartg_(doublereal *f, doublereal *g, doublereal *cs, doublereal *sn, doublereal *r__) { /* System generated locals */ integer i__1; doublereal d__1, d__2; /* Builtin functions */ double log(doublereal), pow_di(doublereal *, integer *), sqrt(doublereal); /* Local variables */ integer i__; doublereal f1, g1, eps, scale; integer count; doublereal safmn2, safmx2; extern doublereal igraphdlamch_(char *); doublereal safmin; /* -- LAPACK auxiliary routine (version 3.4.2) -- -- LAPACK is a software package provided by Univ. of Tennessee, -- -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- September 2012 ===================================================================== LOGICAL FIRST SAVE FIRST, SAFMX2, SAFMIN, SAFMN2 DATA FIRST / .TRUE. / IF( FIRST ) THEN */ safmin = igraphdlamch_("S"); eps = igraphdlamch_("E"); d__1 = igraphdlamch_("B"); i__1 = (integer) (log(safmin / eps) / log(igraphdlamch_("B")) / 2.); safmn2 = pow_di(&d__1, &i__1); safmx2 = 1. / safmn2; /* FIRST = .FALSE. END IF */ if (*g == 0.) { *cs = 1.; *sn = 0.; *r__ = *f; } else if (*f == 0.) { *cs = 0.; *sn = 1.; *r__ = *g; } else { f1 = *f; g1 = *g; /* Computing MAX */ d__1 = abs(f1), d__2 = abs(g1); scale = max(d__1,d__2); if (scale >= safmx2) { count = 0; L10: ++count; f1 *= safmn2; g1 *= safmn2; /* Computing MAX */ d__1 = abs(f1), d__2 = abs(g1); scale = max(d__1,d__2); if (scale >= safmx2) { goto L10; } /* Computing 2nd power */ d__1 = f1; /* Computing 2nd power */ d__2 = g1; *r__ = sqrt(d__1 * d__1 + d__2 * d__2); *cs = f1 / *r__; *sn = g1 / *r__; i__1 = count; for (i__ = 1; i__ <= i__1; ++i__) { *r__ *= safmx2; /* L20: */ } } else if (scale <= safmn2) { count = 0; L30: ++count; f1 *= safmx2; g1 *= safmx2; /* Computing MAX */ d__1 = abs(f1), d__2 = abs(g1); scale = max(d__1,d__2); if (scale <= safmn2) { goto L30; } /* Computing 2nd power */ d__1 = f1; /* Computing 2nd power */ d__2 = g1; *r__ = sqrt(d__1 * d__1 + d__2 * d__2); *cs = f1 / *r__; *sn = g1 / *r__; i__1 = count; for (i__ = 1; i__ <= i__1; ++i__) { *r__ *= safmn2; /* L40: */ } } else { /* Computing 2nd power */ d__1 = f1; /* Computing 2nd power */ d__2 = g1; *r__ = sqrt(d__1 * d__1 + d__2 * d__2); *cs = f1 / *r__; *sn = g1 / *r__; } if (abs(*f) > abs(*g) && *cs < 0.) { *cs = -(*cs); *sn = -(*sn); *r__ = -(*r__); } } return 0; /* End of DLARTG */ } /* igraphdlartg_ */