/* -- translated by f2c (version 20191129). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* > \brief \b DLARUV returns a vector of n random real numbers from a uniform distribution. =========== DOCUMENTATION =========== Online html documentation available at http://www.netlib.org/lapack/explore-html/ > \htmlonly > Download DLARUV + dependencies > > [TGZ] > > [ZIP] > > [TXT] > \endhtmlonly Definition: =========== SUBROUTINE DLARUV( ISEED, N, X ) INTEGER N INTEGER ISEED( 4 ) DOUBLE PRECISION X( N ) > \par Purpose: ============= > > \verbatim > > DLARUV returns a vector of n random real numbers from a uniform (0,1) > distribution (n <= 128). > > This is an auxiliary routine called by DLARNV and ZLARNV. > \endverbatim Arguments: ========== > \param[in,out] ISEED > \verbatim > ISEED is INTEGER array, dimension (4) > On entry, the seed of the random number generator; the array > elements must be between 0 and 4095, and ISEED(4) must be > odd. > On exit, the seed is updated. > \endverbatim > > \param[in] N > \verbatim > N is INTEGER > The number of random numbers to be generated. N <= 128. > \endverbatim > > \param[out] X > \verbatim > X is DOUBLE PRECISION array, dimension (N) > The generated random numbers. > \endverbatim Authors: ======== > \author Univ. of Tennessee > \author Univ. of California Berkeley > \author Univ. of Colorado Denver > \author NAG Ltd. > \date September 2012 > \ingroup auxOTHERauxiliary > \par Further Details: ===================== > > \verbatim > > This routine uses a multiplicative congruential method with modulus > 2**48 and multiplier 33952834046453 (see G.S.Fishman, > 'Multiplicative congruential random number generators with modulus > 2**b: an exhaustive analysis for b = 32 and a partial analysis for > b = 48', Math. Comp. 189, pp 331-344, 1990). > > 48-bit integers are stored in 4 integer array elements with 12 bits > per element. Hence the routine is portable across machines with > integers of 32 bits or more. > \endverbatim > ===================================================================== Subroutine */ int igraphdlaruv_(integer *iseed, integer *n, doublereal *x) { /* Initialized data */ static integer mm[512] /* was [128][4] */ = { 494,2637,255,2008,1253, 3344,4084,1739,3143,3468,688,1657,1238,3166,1292,3422,1270,2016, 154,2862,697,1706,491,931,1444,444,3577,3944,2184,1661,3482,657, 3023,3618,1267,1828,164,3798,3087,2400,2870,3876,1905,1593,1797, 1234,3460,328,2861,1950,617,2070,3331,769,1558,2412,2800,189,287, 2045,1227,2838,209,2770,3654,3993,192,2253,3491,2889,2857,2094, 1818,688,1407,634,3231,815,3524,1914,516,164,303,2144,3480,119, 3357,837,2826,2332,2089,3780,1700,3712,150,2000,3375,1621,3090, 3765,1149,3146,33,3082,2741,359,3316,1749,185,2784,2202,2199,1364, 1244,2020,3160,2785,2772,1217,1822,1245,2252,3904,2774,997,2573, 1148,545,322,789,1440,752,2859,123,1848,643,2405,2638,2344,46, 3814,913,3649,339,3808,822,2832,3078,3633,2970,637,2249,2081,4019, 1478,242,481,2075,4058,622,3376,812,234,641,4005,1122,3135,2640, 2302,40,1832,2247,2034,2637,1287,1691,496,1597,2394,2584,1843,336, 1472,2407,433,2096,1761,2810,566,442,41,1238,1086,603,840,3168, 1499,1084,3438,2408,1589,2391,288,26,512,1456,171,1677,2657,2270, 2587,2961,1970,1817,676,1410,3723,2803,3185,184,663,499,3784,1631, 1925,3912,1398,1349,1441,2224,2411,1907,3192,2786,382,37,759,2948, 1862,3802,2423,2051,2295,1332,1832,2405,3638,3661,327,3660,716, 1842,3987,1368,1848,2366,2508,3754,1766,3572,2893,307,1297,3966, 758,2598,3406,2922,1038,2934,2091,2451,1580,1958,2055,1507,1078, 3273,17,854,2916,3971,2889,3831,2621,1541,893,736,3992,787,2125, 2364,2460,257,1574,3912,1216,3248,3401,2124,2762,149,2245,166,466, 4018,1399,190,2879,153,2320,18,712,2159,2318,2091,3443,1510,449, 1956,2201,3137,3399,1321,2271,3667,2703,629,2365,2431,1113,3922, 2554,184,2099,3228,4012,1921,3452,3901,572,3309,3171,817,3039, 1696,1256,3715,2077,3019,1497,1101,717,51,981,1978,1813,3881,76, 3846,3694,1682,124,1660,3997,479,1141,886,3514,1301,3604,1888, 1836,1990,2058,692,1194,20,3285,2046,2107,3508,3525,3801,2549, 1145,2253,305,3301,1065,3133,2913,3285,1241,1197,3729,2501,1673, 541,2753,949,2361,1165,4081,2725,3305,3069,3617,3733,409,2157, 1361,3973,1865,2525,1409,3445,3577,77,3761,2149,1449,3005,225,85, 3673,3117,3089,1349,2057,413,65,1845,697,3085,3441,1573,3689,2941, 929,533,2841,4077,721,2821,2249,2397,2817,245,1913,1997,3121,997, 1833,2877,1633,981,2009,941,2449,197,2441,285,1473,2741,3129,909, 2801,421,4073,2813,2337,1429,1177,1901,81,1669,2633,2269,129,1141, 249,3917,2481,3941,2217,2749,3041,1877,345,2861,1809,3141,2825, 157,2881,3637,1465,2829,2161,3365,361,2685,3745,2325,3609,3821, 3537,517,3017,2141,1537 }; /* System generated locals */ integer i__1; /* Local variables */ integer i__, i1, i2, i3, i4, it1, it2, it3, it4; /* -- LAPACK auxiliary routine (version 3.4.2) -- -- LAPACK is a software package provided by Univ. of Tennessee, -- -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- September 2012 ===================================================================== Parameter adjustments */ --iseed; --x; /* Function Body */ i1 = iseed[1]; i2 = iseed[2]; i3 = iseed[3]; i4 = iseed[4]; i__1 = min(*n,128); for (i__ = 1; i__ <= i__1; ++i__) { L20: /* Multiply the seed by i-th power of the multiplier modulo 2**48 */ it4 = i4 * mm[i__ + 383]; it3 = it4 / 4096; it4 -= it3 << 12; it3 = it3 + i3 * mm[i__ + 383] + i4 * mm[i__ + 255]; it2 = it3 / 4096; it3 -= it2 << 12; it2 = it2 + i2 * mm[i__ + 383] + i3 * mm[i__ + 255] + i4 * mm[i__ + 127]; it1 = it2 / 4096; it2 -= it1 << 12; it1 = it1 + i1 * mm[i__ + 383] + i2 * mm[i__ + 255] + i3 * mm[i__ + 127] + i4 * mm[i__ - 1]; it1 %= 4096; /* Convert 48-bit integer to a real number in the interval (0,1) */ x[i__] = ((doublereal) it1 + ((doublereal) it2 + ((doublereal) it3 + ( doublereal) it4 * 2.44140625e-4) * 2.44140625e-4) * 2.44140625e-4) * 2.44140625e-4; if (x[i__] == 1.) { /* If a real number has n bits of precision, and the first n bits of the 48-bit integer above happen to be all 1 (which will occur about once every 2**n calls), then X( I ) will be rounded to exactly 1.0. Since X( I ) is not supposed to return exactly 0.0 or 1.0, the statistically correct thing to do in this situation is simply to iterate again. N.B. the case X( I ) = 0.0 should not be possible. */ i1 += 2; i2 += 2; i3 += 2; i4 += 2; goto L20; } /* L10: */ } /* Return final value of seed */ iseed[1] = it1; iseed[2] = it2; iseed[3] = it3; iseed[4] = it4; return 0; /* End of DLARUV */ } /* igraphdlaruv_ */