/* -- translated by f2c (version 20191129). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* > \brief \b DLASCL multiplies a general rectangular matrix by a real scalar defined as cto/cfrom. =========== DOCUMENTATION =========== Online html documentation available at http://www.netlib.org/lapack/explore-html/ > \htmlonly > Download DLASCL + dependencies > > [TGZ] > > [ZIP] > > [TXT] > \endhtmlonly Definition: =========== SUBROUTINE DLASCL( TYPE, KL, KU, CFROM, CTO, M, N, A, LDA, INFO ) CHARACTER TYPE INTEGER INFO, KL, KU, LDA, M, N DOUBLE PRECISION CFROM, CTO DOUBLE PRECISION A( LDA, * ) > \par Purpose: ============= > > \verbatim > > DLASCL multiplies the M by N real matrix A by the real scalar > CTO/CFROM. This is done without over/underflow as long as the final > result CTO*A(I,J)/CFROM does not over/underflow. TYPE specifies that > A may be full, upper triangular, lower triangular, upper Hessenberg, > or banded. > \endverbatim Arguments: ========== > \param[in] TYPE > \verbatim > TYPE is CHARACTER*1 > TYPE indices the storage type of the input matrix. > = 'G': A is a full matrix. > = 'L': A is a lower triangular matrix. > = 'U': A is an upper triangular matrix. > = 'H': A is an upper Hessenberg matrix. > = 'B': A is a symmetric band matrix with lower bandwidth KL > and upper bandwidth KU and with the only the lower > half stored. > = 'Q': A is a symmetric band matrix with lower bandwidth KL > and upper bandwidth KU and with the only the upper > half stored. > = 'Z': A is a band matrix with lower bandwidth KL and upper > bandwidth KU. See DGBTRF for storage details. > \endverbatim > > \param[in] KL > \verbatim > KL is INTEGER > The lower bandwidth of A. Referenced only if TYPE = 'B', > 'Q' or 'Z'. > \endverbatim > > \param[in] KU > \verbatim > KU is INTEGER > The upper bandwidth of A. Referenced only if TYPE = 'B', > 'Q' or 'Z'. > \endverbatim > > \param[in] CFROM > \verbatim > CFROM is DOUBLE PRECISION > \endverbatim > > \param[in] CTO > \verbatim > CTO is DOUBLE PRECISION > > The matrix A is multiplied by CTO/CFROM. A(I,J) is computed > without over/underflow if the final result CTO*A(I,J)/CFROM > can be represented without over/underflow. CFROM must be > nonzero. > \endverbatim > > \param[in] M > \verbatim > M is INTEGER > The number of rows of the matrix A. M >= 0. > \endverbatim > > \param[in] N > \verbatim > N is INTEGER > The number of columns of the matrix A. N >= 0. > \endverbatim > > \param[in,out] A > \verbatim > A is DOUBLE PRECISION array, dimension (LDA,N) > The matrix to be multiplied by CTO/CFROM. See TYPE for the > storage type. > \endverbatim > > \param[in] LDA > \verbatim > LDA is INTEGER > The leading dimension of the array A. LDA >= max(1,M). > \endverbatim > > \param[out] INFO > \verbatim > INFO is INTEGER > 0 - successful exit > <0 - if INFO = -i, the i-th argument had an illegal value. > \endverbatim Authors: ======== > \author Univ. of Tennessee > \author Univ. of California Berkeley > \author Univ. of Colorado Denver > \author NAG Ltd. > \date September 2012 > \ingroup auxOTHERauxiliary ===================================================================== Subroutine */ int igraphdlascl_(char *type__, integer *kl, integer *ku, doublereal *cfrom, doublereal *cto, integer *m, integer *n, doublereal *a, integer *lda, integer *info) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5; /* Local variables */ integer i__, j, k1, k2, k3, k4; doublereal mul, cto1; logical done; doublereal ctoc; extern logical igraphlsame_(char *, char *); integer itype; doublereal cfrom1; extern doublereal igraphdlamch_(char *); doublereal cfromc; extern logical igraphdisnan_(doublereal *); extern /* Subroutine */ int igraphxerbla_(char *, integer *, ftnlen); doublereal bignum, smlnum; /* -- LAPACK auxiliary routine (version 3.4.2) -- -- LAPACK is a software package provided by Univ. of Tennessee, -- -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- September 2012 ===================================================================== Test the input arguments Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; /* Function Body */ *info = 0; if (igraphlsame_(type__, "G")) { itype = 0; } else if (igraphlsame_(type__, "L")) { itype = 1; } else if (igraphlsame_(type__, "U")) { itype = 2; } else if (igraphlsame_(type__, "H")) { itype = 3; } else if (igraphlsame_(type__, "B")) { itype = 4; } else if (igraphlsame_(type__, "Q")) { itype = 5; } else if (igraphlsame_(type__, "Z")) { itype = 6; } else { itype = -1; } if (itype == -1) { *info = -1; } else if (*cfrom == 0. || igraphdisnan_(cfrom)) { *info = -4; } else if (igraphdisnan_(cto)) { *info = -5; } else if (*m < 0) { *info = -6; } else if (*n < 0 || itype == 4 && *n != *m || itype == 5 && *n != *m) { *info = -7; } else if (itype <= 3 && *lda < max(1,*m)) { *info = -9; } else if (itype >= 4) { /* Computing MAX */ i__1 = *m - 1; if (*kl < 0 || *kl > max(i__1,0)) { *info = -2; } else /* if(complicated condition) */ { /* Computing MAX */ i__1 = *n - 1; if (*ku < 0 || *ku > max(i__1,0) || (itype == 4 || itype == 5) && *kl != *ku) { *info = -3; } else if (itype == 4 && *lda < *kl + 1 || itype == 5 && *lda < * ku + 1 || itype == 6 && *lda < (*kl << 1) + *ku + 1) { *info = -9; } } } if (*info != 0) { i__1 = -(*info); igraphxerbla_("DLASCL", &i__1, (ftnlen)6); return 0; } /* Quick return if possible */ if (*n == 0 || *m == 0) { return 0; } /* Get machine parameters */ smlnum = igraphdlamch_("S"); bignum = 1. / smlnum; cfromc = *cfrom; ctoc = *cto; L10: cfrom1 = cfromc * smlnum; if (cfrom1 == cfromc) { /* CFROMC is an inf. Multiply by a correctly signed zero for finite CTOC, or a NaN if CTOC is infinite. */ mul = ctoc / cfromc; done = TRUE_; cto1 = ctoc; } else { cto1 = ctoc / bignum; if (cto1 == ctoc) { /* CTOC is either 0 or an inf. In both cases, CTOC itself serves as the correct multiplication factor. */ mul = ctoc; done = TRUE_; cfromc = 1.; } else if (abs(cfrom1) > abs(ctoc) && ctoc != 0.) { mul = smlnum; done = FALSE_; cfromc = cfrom1; } else if (abs(cto1) > abs(cfromc)) { mul = bignum; done = FALSE_; ctoc = cto1; } else { mul = ctoc / cfromc; done = TRUE_; } } if (itype == 0) { /* Full matrix */ i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { a[i__ + j * a_dim1] *= mul; /* L20: */ } /* L30: */ } } else if (itype == 1) { /* Lower triangular matrix */ i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = j; i__ <= i__2; ++i__) { a[i__ + j * a_dim1] *= mul; /* L40: */ } /* L50: */ } } else if (itype == 2) { /* Upper triangular matrix */ i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = min(j,*m); for (i__ = 1; i__ <= i__2; ++i__) { a[i__ + j * a_dim1] *= mul; /* L60: */ } /* L70: */ } } else if (itype == 3) { /* Upper Hessenberg matrix */ i__1 = *n; for (j = 1; j <= i__1; ++j) { /* Computing MIN */ i__3 = j + 1; i__2 = min(i__3,*m); for (i__ = 1; i__ <= i__2; ++i__) { a[i__ + j * a_dim1] *= mul; /* L80: */ } /* L90: */ } } else if (itype == 4) { /* Lower half of a symmetric band matrix */ k3 = *kl + 1; k4 = *n + 1; i__1 = *n; for (j = 1; j <= i__1; ++j) { /* Computing MIN */ i__3 = k3, i__4 = k4 - j; i__2 = min(i__3,i__4); for (i__ = 1; i__ <= i__2; ++i__) { a[i__ + j * a_dim1] *= mul; /* L100: */ } /* L110: */ } } else if (itype == 5) { /* Upper half of a symmetric band matrix */ k1 = *ku + 2; k3 = *ku + 1; i__1 = *n; for (j = 1; j <= i__1; ++j) { /* Computing MAX */ i__2 = k1 - j; i__3 = k3; for (i__ = max(i__2,1); i__ <= i__3; ++i__) { a[i__ + j * a_dim1] *= mul; /* L120: */ } /* L130: */ } } else if (itype == 6) { /* Band matrix */ k1 = *kl + *ku + 2; k2 = *kl + 1; k3 = (*kl << 1) + *ku + 1; k4 = *kl + *ku + 1 + *m; i__1 = *n; for (j = 1; j <= i__1; ++j) { /* Computing MAX */ i__3 = k1 - j; /* Computing MIN */ i__4 = k3, i__5 = k4 - j; i__2 = min(i__4,i__5); for (i__ = max(i__3,k2); i__ <= i__2; ++i__) { a[i__ + j * a_dim1] *= mul; /* L140: */ } /* L150: */ } } if (! done) { goto L10; } return 0; /* End of DLASCL */ } /* igraphdlascl_ */