/* -- translated by f2c (version 20191129). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Table of constant values */ static integer c__1 = 1; static integer c__2 = 2; static integer c__10 = 10; static integer c__3 = 3; static integer c__4 = 4; static integer c__11 = 11; /* > \brief \b DLASQ2 computes all the eigenvalues of the symmetric positive definite tridiagonal matrix assoc iated with the qd Array Z to high relative accuracy. Used by sbdsqr and sstegr. =========== DOCUMENTATION =========== Online html documentation available at http://www.netlib.org/lapack/explore-html/ > \htmlonly > Download DLASQ2 + dependencies > > [TGZ] > > [ZIP] > > [TXT] > \endhtmlonly Definition: =========== SUBROUTINE DLASQ2( N, Z, INFO ) INTEGER INFO, N DOUBLE PRECISION Z( * ) > \par Purpose: ============= > > \verbatim > > DLASQ2 computes all the eigenvalues of the symmetric positive > definite tridiagonal matrix associated with the qd array Z to high > relative accuracy are computed to high relative accuracy, in the > absence of denormalization, underflow and overflow. > > To see the relation of Z to the tridiagonal matrix, let L be a > unit lower bidiagonal matrix with subdiagonals Z(2,4,6,,..) and > let U be an upper bidiagonal matrix with 1's above and diagonal > Z(1,3,5,,..). The tridiagonal is L*U or, if you prefer, the > symmetric tridiagonal to which it is similar. > > Note : DLASQ2 defines a logical variable, IEEE, which is true > on machines which follow ieee-754 floating-point standard in their > handling of infinities and NaNs, and false otherwise. This variable > is passed to DLASQ3. > \endverbatim Arguments: ========== > \param[in] N > \verbatim > N is INTEGER > The number of rows and columns in the matrix. N >= 0. > \endverbatim > > \param[in,out] Z > \verbatim > Z is DOUBLE PRECISION array, dimension ( 4*N ) > On entry Z holds the qd array. On exit, entries 1 to N hold > the eigenvalues in decreasing order, Z( 2*N+1 ) holds the > trace, and Z( 2*N+2 ) holds the sum of the eigenvalues. If > N > 2, then Z( 2*N+3 ) holds the iteration count, Z( 2*N+4 ) > holds NDIVS/NIN^2, and Z( 2*N+5 ) holds the percentage of > shifts that failed. > \endverbatim > > \param[out] INFO > \verbatim > INFO is INTEGER > = 0: successful exit > < 0: if the i-th argument is a scalar and had an illegal > value, then INFO = -i, if the i-th argument is an > array and the j-entry had an illegal value, then > INFO = -(i*100+j) > > 0: the algorithm failed > = 1, a split was marked by a positive value in E > = 2, current block of Z not diagonalized after 100*N > iterations (in inner while loop). On exit Z holds > a qd array with the same eigenvalues as the given Z. > = 3, termination criterion of outer while loop not met > (program created more than N unreduced blocks) > \endverbatim Authors: ======== > \author Univ. of Tennessee > \author Univ. of California Berkeley > \author Univ. of Colorado Denver > \author NAG Ltd. > \date September 2012 > \ingroup auxOTHERcomputational > \par Further Details: ===================== > > \verbatim > > Local Variables: I0:N0 defines a current unreduced segment of Z. > The shifts are accumulated in SIGMA. Iteration count is in ITER. > Ping-pong is controlled by PP (alternates between 0 and 1). > \endverbatim > ===================================================================== Subroutine */ int igraphdlasq2_(integer *n, doublereal *z__, integer *info) { /* System generated locals */ integer i__1, i__2, i__3; doublereal d__1, d__2; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ doublereal d__, e, g; integer k; doublereal s, t; integer i0, i1, i4, n0, n1; doublereal dn; integer pp; doublereal dn1, dn2, dee, eps, tau, tol; integer ipn4; doublereal tol2; logical ieee; integer nbig; doublereal dmin__, emin, emax; integer kmin, ndiv, iter; doublereal qmin, temp, qmax, zmax; integer splt; doublereal dmin1, dmin2; integer nfail; doublereal desig, trace, sigma; integer iinfo; doublereal tempe, tempq; integer ttype; extern /* Subroutine */ int igraphdlasq3_(integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, integer *, integer *, integer *, logical *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *); extern doublereal igraphdlamch_(char *); doublereal deemin; integer iwhila, iwhilb; doublereal oldemn, safmin; extern /* Subroutine */ int igraphxerbla_(char *, integer *, ftnlen); extern integer igraphilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *, ftnlen, ftnlen); extern /* Subroutine */ int igraphdlasrt_(char *, integer *, doublereal *, integer *); /* -- LAPACK computational routine (version 3.4.2) -- -- LAPACK is a software package provided by Univ. of Tennessee, -- -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- September 2012 ===================================================================== Test the input arguments. (in case DLASQ2 is not called by DLASQ1) Parameter adjustments */ --z__; /* Function Body */ *info = 0; eps = igraphdlamch_("Precision"); safmin = igraphdlamch_("Safe minimum"); tol = eps * 100.; /* Computing 2nd power */ d__1 = tol; tol2 = d__1 * d__1; if (*n < 0) { *info = -1; igraphxerbla_("DLASQ2", &c__1, (ftnlen)6); return 0; } else if (*n == 0) { return 0; } else if (*n == 1) { /* 1-by-1 case. */ if (z__[1] < 0.) { *info = -201; igraphxerbla_("DLASQ2", &c__2, (ftnlen)6); } return 0; } else if (*n == 2) { /* 2-by-2 case. */ if (z__[2] < 0. || z__[3] < 0.) { *info = -2; igraphxerbla_("DLASQ2", &c__2, (ftnlen)6); return 0; } else if (z__[3] > z__[1]) { d__ = z__[3]; z__[3] = z__[1]; z__[1] = d__; } z__[5] = z__[1] + z__[2] + z__[3]; if (z__[2] > z__[3] * tol2) { t = (z__[1] - z__[3] + z__[2]) * .5; s = z__[3] * (z__[2] / t); if (s <= t) { s = z__[3] * (z__[2] / (t * (sqrt(s / t + 1.) + 1.))); } else { s = z__[3] * (z__[2] / (t + sqrt(t) * sqrt(t + s))); } t = z__[1] + (s + z__[2]); z__[3] *= z__[1] / t; z__[1] = t; } z__[2] = z__[3]; z__[6] = z__[2] + z__[1]; return 0; } /* Check for negative data and compute sums of q's and e's. */ z__[*n * 2] = 0.; emin = z__[2]; qmax = 0.; zmax = 0.; d__ = 0.; e = 0.; i__1 = *n - 1 << 1; for (k = 1; k <= i__1; k += 2) { if (z__[k] < 0.) { *info = -(k + 200); igraphxerbla_("DLASQ2", &c__2, (ftnlen)6); return 0; } else if (z__[k + 1] < 0.) { *info = -(k + 201); igraphxerbla_("DLASQ2", &c__2, (ftnlen)6); return 0; } d__ += z__[k]; e += z__[k + 1]; /* Computing MAX */ d__1 = qmax, d__2 = z__[k]; qmax = max(d__1,d__2); /* Computing MIN */ d__1 = emin, d__2 = z__[k + 1]; emin = min(d__1,d__2); /* Computing MAX */ d__1 = max(qmax,zmax), d__2 = z__[k + 1]; zmax = max(d__1,d__2); /* L10: */ } if (z__[(*n << 1) - 1] < 0.) { *info = -((*n << 1) + 199); igraphxerbla_("DLASQ2", &c__2, (ftnlen)6); return 0; } d__ += z__[(*n << 1) - 1]; /* Computing MAX */ d__1 = qmax, d__2 = z__[(*n << 1) - 1]; qmax = max(d__1,d__2); zmax = max(qmax,zmax); /* Check for diagonality. */ if (e == 0.) { i__1 = *n; for (k = 2; k <= i__1; ++k) { z__[k] = z__[(k << 1) - 1]; /* L20: */ } igraphdlasrt_("D", n, &z__[1], &iinfo); z__[(*n << 1) - 1] = d__; return 0; } trace = d__ + e; /* Check for zero data. */ if (trace == 0.) { z__[(*n << 1) - 1] = 0.; return 0; } /* Check whether the machine is IEEE conformable. */ ieee = igraphilaenv_(&c__10, "DLASQ2", "N", &c__1, &c__2, &c__3, &c__4, (ftnlen) 6, (ftnlen)1) == 1 && igraphilaenv_(&c__11, "DLASQ2", "N", &c__1, &c__2, &c__3, &c__4, (ftnlen)6, (ftnlen)1) == 1; /* Rearrange data for locality: Z=(q1,qq1,e1,ee1,q2,qq2,e2,ee2,...). */ for (k = *n << 1; k >= 2; k += -2) { z__[k * 2] = 0.; z__[(k << 1) - 1] = z__[k]; z__[(k << 1) - 2] = 0.; z__[(k << 1) - 3] = z__[k - 1]; /* L30: */ } i0 = 1; n0 = *n; /* Reverse the qd-array, if warranted. */ if (z__[(i0 << 2) - 3] * 1.5 < z__[(n0 << 2) - 3]) { ipn4 = i0 + n0 << 2; i__1 = i0 + n0 - 1 << 1; for (i4 = i0 << 2; i4 <= i__1; i4 += 4) { temp = z__[i4 - 3]; z__[i4 - 3] = z__[ipn4 - i4 - 3]; z__[ipn4 - i4 - 3] = temp; temp = z__[i4 - 1]; z__[i4 - 1] = z__[ipn4 - i4 - 5]; z__[ipn4 - i4 - 5] = temp; /* L40: */ } } /* Initial split checking via dqd and Li's test. */ pp = 0; for (k = 1; k <= 2; ++k) { d__ = z__[(n0 << 2) + pp - 3]; i__1 = (i0 << 2) + pp; for (i4 = (n0 - 1 << 2) + pp; i4 >= i__1; i4 += -4) { if (z__[i4 - 1] <= tol2 * d__) { z__[i4 - 1] = -0.; d__ = z__[i4 - 3]; } else { d__ = z__[i4 - 3] * (d__ / (d__ + z__[i4 - 1])); } /* L50: */ } /* dqd maps Z to ZZ plus Li's test. */ emin = z__[(i0 << 2) + pp + 1]; d__ = z__[(i0 << 2) + pp - 3]; i__1 = (n0 - 1 << 2) + pp; for (i4 = (i0 << 2) + pp; i4 <= i__1; i4 += 4) { z__[i4 - (pp << 1) - 2] = d__ + z__[i4 - 1]; if (z__[i4 - 1] <= tol2 * d__) { z__[i4 - 1] = -0.; z__[i4 - (pp << 1) - 2] = d__; z__[i4 - (pp << 1)] = 0.; d__ = z__[i4 + 1]; } else if (safmin * z__[i4 + 1] < z__[i4 - (pp << 1) - 2] && safmin * z__[i4 - (pp << 1) - 2] < z__[i4 + 1]) { temp = z__[i4 + 1] / z__[i4 - (pp << 1) - 2]; z__[i4 - (pp << 1)] = z__[i4 - 1] * temp; d__ *= temp; } else { z__[i4 - (pp << 1)] = z__[i4 + 1] * (z__[i4 - 1] / z__[i4 - ( pp << 1) - 2]); d__ = z__[i4 + 1] * (d__ / z__[i4 - (pp << 1) - 2]); } /* Computing MIN */ d__1 = emin, d__2 = z__[i4 - (pp << 1)]; emin = min(d__1,d__2); /* L60: */ } z__[(n0 << 2) - pp - 2] = d__; /* Now find qmax. */ qmax = z__[(i0 << 2) - pp - 2]; i__1 = (n0 << 2) - pp - 2; for (i4 = (i0 << 2) - pp + 2; i4 <= i__1; i4 += 4) { /* Computing MAX */ d__1 = qmax, d__2 = z__[i4]; qmax = max(d__1,d__2); /* L70: */ } /* Prepare for the next iteration on K. */ pp = 1 - pp; /* L80: */ } /* Initialise variables to pass to DLASQ3. */ ttype = 0; dmin1 = 0.; dmin2 = 0.; dn = 0.; dn1 = 0.; dn2 = 0.; g = 0.; tau = 0.; iter = 2; nfail = 0; ndiv = n0 - i0 << 1; i__1 = *n + 1; for (iwhila = 1; iwhila <= i__1; ++iwhila) { if (n0 < 1) { goto L170; } /* While array unfinished do E(N0) holds the value of SIGMA when submatrix in I0:N0 splits from the rest of the array, but is negated. */ desig = 0.; if (n0 == *n) { sigma = 0.; } else { sigma = -z__[(n0 << 2) - 1]; } if (sigma < 0.) { *info = 1; return 0; } /* Find last unreduced submatrix's top index I0, find QMAX and EMIN. Find Gershgorin-type bound if Q's much greater than E's. */ emax = 0.; if (n0 > i0) { emin = (d__1 = z__[(n0 << 2) - 5], abs(d__1)); } else { emin = 0.; } qmin = z__[(n0 << 2) - 3]; qmax = qmin; for (i4 = n0 << 2; i4 >= 8; i4 += -4) { if (z__[i4 - 5] <= 0.) { goto L100; } if (qmin >= emax * 4.) { /* Computing MIN */ d__1 = qmin, d__2 = z__[i4 - 3]; qmin = min(d__1,d__2); /* Computing MAX */ d__1 = emax, d__2 = z__[i4 - 5]; emax = max(d__1,d__2); } /* Computing MAX */ d__1 = qmax, d__2 = z__[i4 - 7] + z__[i4 - 5]; qmax = max(d__1,d__2); /* Computing MIN */ d__1 = emin, d__2 = z__[i4 - 5]; emin = min(d__1,d__2); /* L90: */ } i4 = 4; L100: i0 = i4 / 4; pp = 0; if (n0 - i0 > 1) { dee = z__[(i0 << 2) - 3]; deemin = dee; kmin = i0; i__2 = (n0 << 2) - 3; for (i4 = (i0 << 2) + 1; i4 <= i__2; i4 += 4) { dee = z__[i4] * (dee / (dee + z__[i4 - 2])); if (dee <= deemin) { deemin = dee; kmin = (i4 + 3) / 4; } /* L110: */ } if (kmin - i0 << 1 < n0 - kmin && deemin <= z__[(n0 << 2) - 3] * .5) { ipn4 = i0 + n0 << 2; pp = 2; i__2 = i0 + n0 - 1 << 1; for (i4 = i0 << 2; i4 <= i__2; i4 += 4) { temp = z__[i4 - 3]; z__[i4 - 3] = z__[ipn4 - i4 - 3]; z__[ipn4 - i4 - 3] = temp; temp = z__[i4 - 2]; z__[i4 - 2] = z__[ipn4 - i4 - 2]; z__[ipn4 - i4 - 2] = temp; temp = z__[i4 - 1]; z__[i4 - 1] = z__[ipn4 - i4 - 5]; z__[ipn4 - i4 - 5] = temp; temp = z__[i4]; z__[i4] = z__[ipn4 - i4 - 4]; z__[ipn4 - i4 - 4] = temp; /* L120: */ } } } /* Put -(initial shift) into DMIN. Computing MAX */ d__1 = 0., d__2 = qmin - sqrt(qmin) * 2. * sqrt(emax); dmin__ = -max(d__1,d__2); /* Now I0:N0 is unreduced. PP = 0 for ping, PP = 1 for pong. PP = 2 indicates that flipping was applied to the Z array and and that the tests for deflation upon entry in DLASQ3 should not be performed. */ nbig = (n0 - i0 + 1) * 100; i__2 = nbig; for (iwhilb = 1; iwhilb <= i__2; ++iwhilb) { if (i0 > n0) { goto L150; } /* While submatrix unfinished take a good dqds step. */ igraphdlasq3_(&i0, &n0, &z__[1], &pp, &dmin__, &sigma, &desig, &qmax, & nfail, &iter, &ndiv, &ieee, &ttype, &dmin1, &dmin2, &dn, & dn1, &dn2, &g, &tau); pp = 1 - pp; /* When EMIN is very small check for splits. */ if (pp == 0 && n0 - i0 >= 3) { if (z__[n0 * 4] <= tol2 * qmax || z__[(n0 << 2) - 1] <= tol2 * sigma) { splt = i0 - 1; qmax = z__[(i0 << 2) - 3]; emin = z__[(i0 << 2) - 1]; oldemn = z__[i0 * 4]; i__3 = n0 - 3 << 2; for (i4 = i0 << 2; i4 <= i__3; i4 += 4) { if (z__[i4] <= tol2 * z__[i4 - 3] || z__[i4 - 1] <= tol2 * sigma) { z__[i4 - 1] = -sigma; splt = i4 / 4; qmax = 0.; emin = z__[i4 + 3]; oldemn = z__[i4 + 4]; } else { /* Computing MAX */ d__1 = qmax, d__2 = z__[i4 + 1]; qmax = max(d__1,d__2); /* Computing MIN */ d__1 = emin, d__2 = z__[i4 - 1]; emin = min(d__1,d__2); /* Computing MIN */ d__1 = oldemn, d__2 = z__[i4]; oldemn = min(d__1,d__2); } /* L130: */ } z__[(n0 << 2) - 1] = emin; z__[n0 * 4] = oldemn; i0 = splt + 1; } } /* L140: */ } *info = 2; /* Maximum number of iterations exceeded, restore the shift SIGMA and place the new d's and e's in a qd array. This might need to be done for several blocks */ i1 = i0; n1 = n0; L145: tempq = z__[(i0 << 2) - 3]; z__[(i0 << 2) - 3] += sigma; i__2 = n0; for (k = i0 + 1; k <= i__2; ++k) { tempe = z__[(k << 2) - 5]; z__[(k << 2) - 5] *= tempq / z__[(k << 2) - 7]; tempq = z__[(k << 2) - 3]; z__[(k << 2) - 3] = z__[(k << 2) - 3] + sigma + tempe - z__[(k << 2) - 5]; } /* Prepare to do this on the previous block if there is one */ if (i1 > 1) { n1 = i1 - 1; while(i1 >= 2 && z__[(i1 << 2) - 5] >= 0.) { --i1; } sigma = -z__[(n1 << 2) - 1]; goto L145; } i__2 = *n; for (k = 1; k <= i__2; ++k) { z__[(k << 1) - 1] = z__[(k << 2) - 3]; /* Only the block 1..N0 is unfinished. The rest of the e's must be essentially zero, although sometimes other data has been stored in them. */ if (k < n0) { z__[k * 2] = z__[(k << 2) - 1]; } else { z__[k * 2] = 0.; } } return 0; /* end IWHILB */ L150: /* L160: */ ; } *info = 3; return 0; /* end IWHILA */ L170: /* Move q's to the front. */ i__1 = *n; for (k = 2; k <= i__1; ++k) { z__[k] = z__[(k << 2) - 3]; /* L180: */ } /* Sort and compute sum of eigenvalues. */ igraphdlasrt_("D", n, &z__[1], &iinfo); e = 0.; for (k = *n; k >= 1; --k) { e += z__[k]; /* L190: */ } /* Store trace, sum(eigenvalues) and information on performance. */ z__[(*n << 1) + 1] = trace; z__[(*n << 1) + 2] = e; z__[(*n << 1) + 3] = (doublereal) iter; /* Computing 2nd power */ i__1 = *n; z__[(*n << 1) + 4] = (doublereal) ndiv / (doublereal) (i__1 * i__1); z__[(*n << 1) + 5] = nfail * 100. / (doublereal) iter; return 0; /* End of DLASQ2 */ } /* igraphdlasq2_ */