/* -- translated by f2c (version 20191129). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* > \brief \b DLASQ3 checks for deflation, computes a shift and calls dqds. Used by sbdsqr. =========== DOCUMENTATION =========== Online html documentation available at http://www.netlib.org/lapack/explore-html/ > \htmlonly > Download DLASQ3 + dependencies > > [TGZ] > > [ZIP] > > [TXT] > \endhtmlonly Definition: =========== SUBROUTINE DLASQ3( I0, N0, Z, PP, DMIN, SIGMA, DESIG, QMAX, NFAIL, ITER, NDIV, IEEE, TTYPE, DMIN1, DMIN2, DN, DN1, DN2, G, TAU ) LOGICAL IEEE INTEGER I0, ITER, N0, NDIV, NFAIL, PP DOUBLE PRECISION DESIG, DMIN, DMIN1, DMIN2, DN, DN1, DN2, G, $ QMAX, SIGMA, TAU DOUBLE PRECISION Z( * ) > \par Purpose: ============= > > \verbatim > > DLASQ3 checks for deflation, computes a shift (TAU) and calls dqds. > In case of failure it changes shifts, and tries again until output > is positive. > \endverbatim Arguments: ========== > \param[in] I0 > \verbatim > I0 is INTEGER > First index. > \endverbatim > > \param[in,out] N0 > \verbatim > N0 is INTEGER > Last index. > \endverbatim > > \param[in] Z > \verbatim > Z is DOUBLE PRECISION array, dimension ( 4*N ) > Z holds the qd array. > \endverbatim > > \param[in,out] PP > \verbatim > PP is INTEGER > PP=0 for ping, PP=1 for pong. > PP=2 indicates that flipping was applied to the Z array > and that the initial tests for deflation should not be > performed. > \endverbatim > > \param[out] DMIN > \verbatim > DMIN is DOUBLE PRECISION > Minimum value of d. > \endverbatim > > \param[out] SIGMA > \verbatim > SIGMA is DOUBLE PRECISION > Sum of shifts used in current segment. > \endverbatim > > \param[in,out] DESIG > \verbatim > DESIG is DOUBLE PRECISION > Lower order part of SIGMA > \endverbatim > > \param[in] QMAX > \verbatim > QMAX is DOUBLE PRECISION > Maximum value of q. > \endverbatim > > \param[out] NFAIL > \verbatim > NFAIL is INTEGER > Number of times shift was too big. > \endverbatim > > \param[out] ITER > \verbatim > ITER is INTEGER > Number of iterations. > \endverbatim > > \param[out] NDIV > \verbatim > NDIV is INTEGER > Number of divisions. > \endverbatim > > \param[in] IEEE > \verbatim > IEEE is LOGICAL > Flag for IEEE or non IEEE arithmetic (passed to DLASQ5). > \endverbatim > > \param[in,out] TTYPE > \verbatim > TTYPE is INTEGER > Shift type. > \endverbatim > > \param[in,out] DMIN1 > \verbatim > DMIN1 is DOUBLE PRECISION > \endverbatim > > \param[in,out] DMIN2 > \verbatim > DMIN2 is DOUBLE PRECISION > \endverbatim > > \param[in,out] DN > \verbatim > DN is DOUBLE PRECISION > \endverbatim > > \param[in,out] DN1 > \verbatim > DN1 is DOUBLE PRECISION > \endverbatim > > \param[in,out] DN2 > \verbatim > DN2 is DOUBLE PRECISION > \endverbatim > > \param[in,out] G > \verbatim > G is DOUBLE PRECISION > \endverbatim > > \param[in,out] TAU > \verbatim > TAU is DOUBLE PRECISION > > These are passed as arguments in order to save their values > between calls to DLASQ3. > \endverbatim Authors: ======== > \author Univ. of Tennessee > \author Univ. of California Berkeley > \author Univ. of Colorado Denver > \author NAG Ltd. > \date September 2012 > \ingroup auxOTHERcomputational ===================================================================== Subroutine */ int igraphdlasq3_(integer *i0, integer *n0, doublereal *z__, integer *pp, doublereal *dmin__, doublereal *sigma, doublereal *desig, doublereal *qmax, integer *nfail, integer *iter, integer *ndiv, logical *ieee, integer *ttype, doublereal *dmin1, doublereal *dmin2, doublereal *dn, doublereal *dn1, doublereal *dn2, doublereal *g, doublereal *tau) { /* System generated locals */ integer i__1; doublereal d__1, d__2; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ doublereal s, t; integer j4, nn; doublereal eps, tol; integer n0in, ipn4; doublereal tol2, temp; extern /* Subroutine */ int igraphdlasq4_(integer *, integer *, doublereal *, integer *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, integer *, doublereal *), igraphdlasq5_(integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, logical * , doublereal *), igraphdlasq6_(integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *); extern doublereal igraphdlamch_(char *); extern logical igraphdisnan_(doublereal *); /* -- LAPACK computational routine (version 3.4.2) -- -- LAPACK is a software package provided by Univ. of Tennessee, -- -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- September 2012 ===================================================================== Parameter adjustments */ --z__; /* Function Body */ n0in = *n0; eps = igraphdlamch_("Precision"); tol = eps * 100.; /* Computing 2nd power */ d__1 = tol; tol2 = d__1 * d__1; /* Check for deflation. */ L10: if (*n0 < *i0) { return 0; } if (*n0 == *i0) { goto L20; } nn = (*n0 << 2) + *pp; if (*n0 == *i0 + 1) { goto L40; } /* Check whether E(N0-1) is negligible, 1 eigenvalue. */ if (z__[nn - 5] > tol2 * (*sigma + z__[nn - 3]) && z__[nn - (*pp << 1) - 4] > tol2 * z__[nn - 7]) { goto L30; } L20: z__[(*n0 << 2) - 3] = z__[(*n0 << 2) + *pp - 3] + *sigma; --(*n0); goto L10; /* Check whether E(N0-2) is negligible, 2 eigenvalues. */ L30: if (z__[nn - 9] > tol2 * *sigma && z__[nn - (*pp << 1) - 8] > tol2 * z__[ nn - 11]) { goto L50; } L40: if (z__[nn - 3] > z__[nn - 7]) { s = z__[nn - 3]; z__[nn - 3] = z__[nn - 7]; z__[nn - 7] = s; } t = (z__[nn - 7] - z__[nn - 3] + z__[nn - 5]) * .5; if (z__[nn - 5] > z__[nn - 3] * tol2 && t != 0.) { s = z__[nn - 3] * (z__[nn - 5] / t); if (s <= t) { s = z__[nn - 3] * (z__[nn - 5] / (t * (sqrt(s / t + 1.) + 1.))); } else { s = z__[nn - 3] * (z__[nn - 5] / (t + sqrt(t) * sqrt(t + s))); } t = z__[nn - 7] + (s + z__[nn - 5]); z__[nn - 3] *= z__[nn - 7] / t; z__[nn - 7] = t; } z__[(*n0 << 2) - 7] = z__[nn - 7] + *sigma; z__[(*n0 << 2) - 3] = z__[nn - 3] + *sigma; *n0 += -2; goto L10; L50: if (*pp == 2) { *pp = 0; } /* Reverse the qd-array, if warranted. */ if (*dmin__ <= 0. || *n0 < n0in) { if (z__[(*i0 << 2) + *pp - 3] * 1.5 < z__[(*n0 << 2) + *pp - 3]) { ipn4 = *i0 + *n0 << 2; i__1 = *i0 + *n0 - 1 << 1; for (j4 = *i0 << 2; j4 <= i__1; j4 += 4) { temp = z__[j4 - 3]; z__[j4 - 3] = z__[ipn4 - j4 - 3]; z__[ipn4 - j4 - 3] = temp; temp = z__[j4 - 2]; z__[j4 - 2] = z__[ipn4 - j4 - 2]; z__[ipn4 - j4 - 2] = temp; temp = z__[j4 - 1]; z__[j4 - 1] = z__[ipn4 - j4 - 5]; z__[ipn4 - j4 - 5] = temp; temp = z__[j4]; z__[j4] = z__[ipn4 - j4 - 4]; z__[ipn4 - j4 - 4] = temp; /* L60: */ } if (*n0 - *i0 <= 4) { z__[(*n0 << 2) + *pp - 1] = z__[(*i0 << 2) + *pp - 1]; z__[(*n0 << 2) - *pp] = z__[(*i0 << 2) - *pp]; } /* Computing MIN */ d__1 = *dmin2, d__2 = z__[(*n0 << 2) + *pp - 1]; *dmin2 = min(d__1,d__2); /* Computing MIN */ d__1 = z__[(*n0 << 2) + *pp - 1], d__2 = z__[(*i0 << 2) + *pp - 1] , d__1 = min(d__1,d__2), d__2 = z__[(*i0 << 2) + *pp + 3]; z__[(*n0 << 2) + *pp - 1] = min(d__1,d__2); /* Computing MIN */ d__1 = z__[(*n0 << 2) - *pp], d__2 = z__[(*i0 << 2) - *pp], d__1 = min(d__1,d__2), d__2 = z__[(*i0 << 2) - *pp + 4]; z__[(*n0 << 2) - *pp] = min(d__1,d__2); /* Computing MAX */ d__1 = *qmax, d__2 = z__[(*i0 << 2) + *pp - 3], d__1 = max(d__1, d__2), d__2 = z__[(*i0 << 2) + *pp + 1]; *qmax = max(d__1,d__2); *dmin__ = -0.; } } /* Choose a shift. */ igraphdlasq4_(i0, n0, &z__[1], pp, &n0in, dmin__, dmin1, dmin2, dn, dn1, dn2, tau, ttype, g); /* Call dqds until DMIN > 0. */ L70: igraphdlasq5_(i0, n0, &z__[1], pp, tau, sigma, dmin__, dmin1, dmin2, dn, dn1, dn2, ieee, &eps); *ndiv += *n0 - *i0 + 2; ++(*iter); /* Check status. */ if (*dmin__ >= 0. && *dmin1 >= 0.) { /* Success. */ goto L90; } else if (*dmin__ < 0. && *dmin1 > 0. && z__[(*n0 - 1 << 2) - *pp] < tol * (*sigma + *dn1) && abs(*dn) < tol * *sigma) { /* Convergence hidden by negative DN. */ z__[(*n0 - 1 << 2) - *pp + 2] = 0.; *dmin__ = 0.; goto L90; } else if (*dmin__ < 0.) { /* TAU too big. Select new TAU and try again. */ ++(*nfail); if (*ttype < -22) { /* Failed twice. Play it safe. */ *tau = 0.; } else if (*dmin1 > 0.) { /* Late failure. Gives excellent shift. */ *tau = (*tau + *dmin__) * (1. - eps * 2.); *ttype += -11; } else { /* Early failure. Divide by 4. */ *tau *= .25; *ttype += -12; } goto L70; } else if (igraphdisnan_(dmin__)) { /* NaN. */ if (*tau == 0.) { goto L80; } else { *tau = 0.; goto L70; } } else { /* Possible underflow. Play it safe. */ goto L80; } /* Risk of underflow. */ L80: igraphdlasq6_(i0, n0, &z__[1], pp, dmin__, dmin1, dmin2, dn, dn1, dn2); *ndiv += *n0 - *i0 + 2; ++(*iter); *tau = 0.; L90: if (*tau < *sigma) { *desig += *tau; t = *sigma + *desig; *desig -= t - *sigma; } else { t = *sigma + *tau; *desig = *sigma - (t - *tau) + *desig; } *sigma = t; return 0; /* End of DLASQ3 */ } /* igraphdlasq3_ */