/* -- translated by f2c (version 20191129). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Table of constant values */ static integer c__4 = 4; static integer c__1 = 1; static integer c__16 = 16; static integer c__0 = 0; /* > \brief \b DLASY2 solves the Sylvester matrix equation where the matrices are of order 1 or 2. =========== DOCUMENTATION =========== Online html documentation available at http://www.netlib.org/lapack/explore-html/ > \htmlonly > Download DLASY2 + dependencies > > [TGZ] > > [ZIP] > > [TXT] > \endhtmlonly Definition: =========== SUBROUTINE DLASY2( LTRANL, LTRANR, ISGN, N1, N2, TL, LDTL, TR, LDTR, B, LDB, SCALE, X, LDX, XNORM, INFO ) LOGICAL LTRANL, LTRANR INTEGER INFO, ISGN, LDB, LDTL, LDTR, LDX, N1, N2 DOUBLE PRECISION SCALE, XNORM DOUBLE PRECISION B( LDB, * ), TL( LDTL, * ), TR( LDTR, * ), $ X( LDX, * ) > \par Purpose: ============= > > \verbatim > > DLASY2 solves for the N1 by N2 matrix X, 1 <= N1,N2 <= 2, in > > op(TL)*X + ISGN*X*op(TR) = SCALE*B, > > where TL is N1 by N1, TR is N2 by N2, B is N1 by N2, and ISGN = 1 or > -1. op(T) = T or T**T, where T**T denotes the transpose of T. > \endverbatim Arguments: ========== > \param[in] LTRANL > \verbatim > LTRANL is LOGICAL > On entry, LTRANL specifies the op(TL): > = .FALSE., op(TL) = TL, > = .TRUE., op(TL) = TL**T. > \endverbatim > > \param[in] LTRANR > \verbatim > LTRANR is LOGICAL > On entry, LTRANR specifies the op(TR): > = .FALSE., op(TR) = TR, > = .TRUE., op(TR) = TR**T. > \endverbatim > > \param[in] ISGN > \verbatim > ISGN is INTEGER > On entry, ISGN specifies the sign of the equation > as described before. ISGN may only be 1 or -1. > \endverbatim > > \param[in] N1 > \verbatim > N1 is INTEGER > On entry, N1 specifies the order of matrix TL. > N1 may only be 0, 1 or 2. > \endverbatim > > \param[in] N2 > \verbatim > N2 is INTEGER > On entry, N2 specifies the order of matrix TR. > N2 may only be 0, 1 or 2. > \endverbatim > > \param[in] TL > \verbatim > TL is DOUBLE PRECISION array, dimension (LDTL,2) > On entry, TL contains an N1 by N1 matrix. > \endverbatim > > \param[in] LDTL > \verbatim > LDTL is INTEGER > The leading dimension of the matrix TL. LDTL >= max(1,N1). > \endverbatim > > \param[in] TR > \verbatim > TR is DOUBLE PRECISION array, dimension (LDTR,2) > On entry, TR contains an N2 by N2 matrix. > \endverbatim > > \param[in] LDTR > \verbatim > LDTR is INTEGER > The leading dimension of the matrix TR. LDTR >= max(1,N2). > \endverbatim > > \param[in] B > \verbatim > B is DOUBLE PRECISION array, dimension (LDB,2) > On entry, the N1 by N2 matrix B contains the right-hand > side of the equation. > \endverbatim > > \param[in] LDB > \verbatim > LDB is INTEGER > The leading dimension of the matrix B. LDB >= max(1,N1). > \endverbatim > > \param[out] SCALE > \verbatim > SCALE is DOUBLE PRECISION > On exit, SCALE contains the scale factor. SCALE is chosen > less than or equal to 1 to prevent the solution overflowing. > \endverbatim > > \param[out] X > \verbatim > X is DOUBLE PRECISION array, dimension (LDX,2) > On exit, X contains the N1 by N2 solution. > \endverbatim > > \param[in] LDX > \verbatim > LDX is INTEGER > The leading dimension of the matrix X. LDX >= max(1,N1). > \endverbatim > > \param[out] XNORM > \verbatim > XNORM is DOUBLE PRECISION > On exit, XNORM is the infinity-norm of the solution. > \endverbatim > > \param[out] INFO > \verbatim > INFO is INTEGER > On exit, INFO is set to > 0: successful exit. > 1: TL and TR have too close eigenvalues, so TL or > TR is perturbed to get a nonsingular equation. > NOTE: In the interests of speed, this routine does not > check the inputs for errors. > \endverbatim Authors: ======== > \author Univ. of Tennessee > \author Univ. of California Berkeley > \author Univ. of Colorado Denver > \author NAG Ltd. > \date September 2012 > \ingroup doubleSYauxiliary ===================================================================== Subroutine */ int igraphdlasy2_(logical *ltranl, logical *ltranr, integer *isgn, integer *n1, integer *n2, doublereal *tl, integer *ldtl, doublereal * tr, integer *ldtr, doublereal *b, integer *ldb, doublereal *scale, doublereal *x, integer *ldx, doublereal *xnorm, integer *info) { /* Initialized data */ static integer locu12[4] = { 3,4,1,2 }; static integer locl21[4] = { 2,1,4,3 }; static integer locu22[4] = { 4,3,2,1 }; static logical xswpiv[4] = { FALSE_,FALSE_,TRUE_,TRUE_ }; static logical bswpiv[4] = { FALSE_,TRUE_,FALSE_,TRUE_ }; /* System generated locals */ integer b_dim1, b_offset, tl_dim1, tl_offset, tr_dim1, tr_offset, x_dim1, x_offset; doublereal d__1, d__2, d__3, d__4, d__5, d__6, d__7, d__8; /* Local variables */ integer i__, j, k; doublereal x2[2], l21, u11, u12; integer ip, jp; doublereal u22, t16[16] /* was [4][4] */, gam, bet, eps, sgn, tmp[4], tau1, btmp[4], smin; integer ipiv; doublereal temp; integer jpiv[4]; doublereal xmax; integer ipsv, jpsv; logical bswap; extern /* Subroutine */ int igraphdcopy_(integer *, doublereal *, integer *, doublereal *, integer *), igraphdswap_(integer *, doublereal *, integer *, doublereal *, integer *); logical xswap; extern doublereal igraphdlamch_(char *); extern integer igraphidamax_(integer *, doublereal *, integer *); doublereal smlnum; /* -- LAPACK auxiliary routine (version 3.4.2) -- -- LAPACK is a software package provided by Univ. of Tennessee, -- -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- September 2012 ===================================================================== Parameter adjustments */ tl_dim1 = *ldtl; tl_offset = 1 + tl_dim1; tl -= tl_offset; tr_dim1 = *ldtr; tr_offset = 1 + tr_dim1; tr -= tr_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; x_dim1 = *ldx; x_offset = 1 + x_dim1; x -= x_offset; /* Function Body Do not check the input parameters for errors */ *info = 0; /* Quick return if possible */ if (*n1 == 0 || *n2 == 0) { return 0; } /* Set constants to control overflow */ eps = igraphdlamch_("P"); smlnum = igraphdlamch_("S") / eps; sgn = (doublereal) (*isgn); k = *n1 + *n1 + *n2 - 2; switch (k) { case 1: goto L10; case 2: goto L20; case 3: goto L30; case 4: goto L50; } /* 1 by 1: TL11*X + SGN*X*TR11 = B11 */ L10: tau1 = tl[tl_dim1 + 1] + sgn * tr[tr_dim1 + 1]; bet = abs(tau1); if (bet <= smlnum) { tau1 = smlnum; bet = smlnum; *info = 1; } *scale = 1.; gam = (d__1 = b[b_dim1 + 1], abs(d__1)); if (smlnum * gam > bet) { *scale = 1. / gam; } x[x_dim1 + 1] = b[b_dim1 + 1] * *scale / tau1; *xnorm = (d__1 = x[x_dim1 + 1], abs(d__1)); return 0; /* 1 by 2: TL11*[X11 X12] + ISGN*[X11 X12]*op[TR11 TR12] = [B11 B12] [TR21 TR22] */ L20: /* Computing MAX Computing MAX */ d__7 = (d__1 = tl[tl_dim1 + 1], abs(d__1)), d__8 = (d__2 = tr[tr_dim1 + 1] , abs(d__2)), d__7 = max(d__7,d__8), d__8 = (d__3 = tr[(tr_dim1 << 1) + 1], abs(d__3)), d__7 = max(d__7,d__8), d__8 = (d__4 = tr[ tr_dim1 + 2], abs(d__4)), d__7 = max(d__7,d__8), d__8 = (d__5 = tr[(tr_dim1 << 1) + 2], abs(d__5)); d__6 = eps * max(d__7,d__8); smin = max(d__6,smlnum); tmp[0] = tl[tl_dim1 + 1] + sgn * tr[tr_dim1 + 1]; tmp[3] = tl[tl_dim1 + 1] + sgn * tr[(tr_dim1 << 1) + 2]; if (*ltranr) { tmp[1] = sgn * tr[tr_dim1 + 2]; tmp[2] = sgn * tr[(tr_dim1 << 1) + 1]; } else { tmp[1] = sgn * tr[(tr_dim1 << 1) + 1]; tmp[2] = sgn * tr[tr_dim1 + 2]; } btmp[0] = b[b_dim1 + 1]; btmp[1] = b[(b_dim1 << 1) + 1]; goto L40; /* 2 by 1: op[TL11 TL12]*[X11] + ISGN* [X11]*TR11 = [B11] [TL21 TL22] [X21] [X21] [B21] */ L30: /* Computing MAX Computing MAX */ d__7 = (d__1 = tr[tr_dim1 + 1], abs(d__1)), d__8 = (d__2 = tl[tl_dim1 + 1] , abs(d__2)), d__7 = max(d__7,d__8), d__8 = (d__3 = tl[(tl_dim1 << 1) + 1], abs(d__3)), d__7 = max(d__7,d__8), d__8 = (d__4 = tl[ tl_dim1 + 2], abs(d__4)), d__7 = max(d__7,d__8), d__8 = (d__5 = tl[(tl_dim1 << 1) + 2], abs(d__5)); d__6 = eps * max(d__7,d__8); smin = max(d__6,smlnum); tmp[0] = tl[tl_dim1 + 1] + sgn * tr[tr_dim1 + 1]; tmp[3] = tl[(tl_dim1 << 1) + 2] + sgn * tr[tr_dim1 + 1]; if (*ltranl) { tmp[1] = tl[(tl_dim1 << 1) + 1]; tmp[2] = tl[tl_dim1 + 2]; } else { tmp[1] = tl[tl_dim1 + 2]; tmp[2] = tl[(tl_dim1 << 1) + 1]; } btmp[0] = b[b_dim1 + 1]; btmp[1] = b[b_dim1 + 2]; L40: /* Solve 2 by 2 system using complete pivoting. Set pivots less than SMIN to SMIN. */ ipiv = igraphidamax_(&c__4, tmp, &c__1); u11 = tmp[ipiv - 1]; if (abs(u11) <= smin) { *info = 1; u11 = smin; } u12 = tmp[locu12[ipiv - 1] - 1]; l21 = tmp[locl21[ipiv - 1] - 1] / u11; u22 = tmp[locu22[ipiv - 1] - 1] - u12 * l21; xswap = xswpiv[ipiv - 1]; bswap = bswpiv[ipiv - 1]; if (abs(u22) <= smin) { *info = 1; u22 = smin; } if (bswap) { temp = btmp[1]; btmp[1] = btmp[0] - l21 * temp; btmp[0] = temp; } else { btmp[1] -= l21 * btmp[0]; } *scale = 1.; if (smlnum * 2. * abs(btmp[1]) > abs(u22) || smlnum * 2. * abs(btmp[0]) > abs(u11)) { /* Computing MAX */ d__1 = abs(btmp[0]), d__2 = abs(btmp[1]); *scale = .5 / max(d__1,d__2); btmp[0] *= *scale; btmp[1] *= *scale; } x2[1] = btmp[1] / u22; x2[0] = btmp[0] / u11 - u12 / u11 * x2[1]; if (xswap) { temp = x2[1]; x2[1] = x2[0]; x2[0] = temp; } x[x_dim1 + 1] = x2[0]; if (*n1 == 1) { x[(x_dim1 << 1) + 1] = x2[1]; *xnorm = (d__1 = x[x_dim1 + 1], abs(d__1)) + (d__2 = x[(x_dim1 << 1) + 1], abs(d__2)); } else { x[x_dim1 + 2] = x2[1]; /* Computing MAX */ d__3 = (d__1 = x[x_dim1 + 1], abs(d__1)), d__4 = (d__2 = x[x_dim1 + 2] , abs(d__2)); *xnorm = max(d__3,d__4); } return 0; /* 2 by 2: op[TL11 TL12]*[X11 X12] +ISGN* [X11 X12]*op[TR11 TR12] = [B11 B12] [TL21 TL22] [X21 X22] [X21 X22] [TR21 TR22] [B21 B22] Solve equivalent 4 by 4 system using complete pivoting. Set pivots less than SMIN to SMIN. */ L50: /* Computing MAX */ d__5 = (d__1 = tr[tr_dim1 + 1], abs(d__1)), d__6 = (d__2 = tr[(tr_dim1 << 1) + 1], abs(d__2)), d__5 = max(d__5,d__6), d__6 = (d__3 = tr[ tr_dim1 + 2], abs(d__3)), d__5 = max(d__5,d__6), d__6 = (d__4 = tr[(tr_dim1 << 1) + 2], abs(d__4)); smin = max(d__5,d__6); /* Computing MAX */ d__5 = smin, d__6 = (d__1 = tl[tl_dim1 + 1], abs(d__1)), d__5 = max(d__5, d__6), d__6 = (d__2 = tl[(tl_dim1 << 1) + 1], abs(d__2)), d__5 = max(d__5,d__6), d__6 = (d__3 = tl[tl_dim1 + 2], abs(d__3)), d__5 = max(d__5,d__6), d__6 = (d__4 = tl[(tl_dim1 << 1) + 2], abs(d__4)) ; smin = max(d__5,d__6); /* Computing MAX */ d__1 = eps * smin; smin = max(d__1,smlnum); btmp[0] = 0.; igraphdcopy_(&c__16, btmp, &c__0, t16, &c__1); t16[0] = tl[tl_dim1 + 1] + sgn * tr[tr_dim1 + 1]; t16[5] = tl[(tl_dim1 << 1) + 2] + sgn * tr[tr_dim1 + 1]; t16[10] = tl[tl_dim1 + 1] + sgn * tr[(tr_dim1 << 1) + 2]; t16[15] = tl[(tl_dim1 << 1) + 2] + sgn * tr[(tr_dim1 << 1) + 2]; if (*ltranl) { t16[4] = tl[tl_dim1 + 2]; t16[1] = tl[(tl_dim1 << 1) + 1]; t16[14] = tl[tl_dim1 + 2]; t16[11] = tl[(tl_dim1 << 1) + 1]; } else { t16[4] = tl[(tl_dim1 << 1) + 1]; t16[1] = tl[tl_dim1 + 2]; t16[14] = tl[(tl_dim1 << 1) + 1]; t16[11] = tl[tl_dim1 + 2]; } if (*ltranr) { t16[8] = sgn * tr[(tr_dim1 << 1) + 1]; t16[13] = sgn * tr[(tr_dim1 << 1) + 1]; t16[2] = sgn * tr[tr_dim1 + 2]; t16[7] = sgn * tr[tr_dim1 + 2]; } else { t16[8] = sgn * tr[tr_dim1 + 2]; t16[13] = sgn * tr[tr_dim1 + 2]; t16[2] = sgn * tr[(tr_dim1 << 1) + 1]; t16[7] = sgn * tr[(tr_dim1 << 1) + 1]; } btmp[0] = b[b_dim1 + 1]; btmp[1] = b[b_dim1 + 2]; btmp[2] = b[(b_dim1 << 1) + 1]; btmp[3] = b[(b_dim1 << 1) + 2]; /* Perform elimination */ for (i__ = 1; i__ <= 3; ++i__) { xmax = 0.; for (ip = i__; ip <= 4; ++ip) { for (jp = i__; jp <= 4; ++jp) { if ((d__1 = t16[ip + (jp << 2) - 5], abs(d__1)) >= xmax) { xmax = (d__1 = t16[ip + (jp << 2) - 5], abs(d__1)); ipsv = ip; jpsv = jp; } /* L60: */ } /* L70: */ } if (ipsv != i__) { igraphdswap_(&c__4, &t16[ipsv - 1], &c__4, &t16[i__ - 1], &c__4); temp = btmp[i__ - 1]; btmp[i__ - 1] = btmp[ipsv - 1]; btmp[ipsv - 1] = temp; } if (jpsv != i__) { igraphdswap_(&c__4, &t16[(jpsv << 2) - 4], &c__1, &t16[(i__ << 2) - 4], &c__1); } jpiv[i__ - 1] = jpsv; if ((d__1 = t16[i__ + (i__ << 2) - 5], abs(d__1)) < smin) { *info = 1; t16[i__ + (i__ << 2) - 5] = smin; } for (j = i__ + 1; j <= 4; ++j) { t16[j + (i__ << 2) - 5] /= t16[i__ + (i__ << 2) - 5]; btmp[j - 1] -= t16[j + (i__ << 2) - 5] * btmp[i__ - 1]; for (k = i__ + 1; k <= 4; ++k) { t16[j + (k << 2) - 5] -= t16[j + (i__ << 2) - 5] * t16[i__ + ( k << 2) - 5]; /* L80: */ } /* L90: */ } /* L100: */ } if (abs(t16[15]) < smin) { t16[15] = smin; } *scale = 1.; if (smlnum * 8. * abs(btmp[0]) > abs(t16[0]) || smlnum * 8. * abs(btmp[1]) > abs(t16[5]) || smlnum * 8. * abs(btmp[2]) > abs(t16[10]) || smlnum * 8. * abs(btmp[3]) > abs(t16[15])) { /* Computing MAX */ d__1 = abs(btmp[0]), d__2 = abs(btmp[1]), d__1 = max(d__1,d__2), d__2 = abs(btmp[2]), d__1 = max(d__1,d__2), d__2 = abs(btmp[3]); *scale = .125 / max(d__1,d__2); btmp[0] *= *scale; btmp[1] *= *scale; btmp[2] *= *scale; btmp[3] *= *scale; } for (i__ = 1; i__ <= 4; ++i__) { k = 5 - i__; temp = 1. / t16[k + (k << 2) - 5]; tmp[k - 1] = btmp[k - 1] * temp; for (j = k + 1; j <= 4; ++j) { tmp[k - 1] -= temp * t16[k + (j << 2) - 5] * tmp[j - 1]; /* L110: */ } /* L120: */ } for (i__ = 1; i__ <= 3; ++i__) { if (jpiv[4 - i__ - 1] != 4 - i__) { temp = tmp[4 - i__ - 1]; tmp[4 - i__ - 1] = tmp[jpiv[4 - i__ - 1] - 1]; tmp[jpiv[4 - i__ - 1] - 1] = temp; } /* L130: */ } x[x_dim1 + 1] = tmp[0]; x[x_dim1 + 2] = tmp[1]; x[(x_dim1 << 1) + 1] = tmp[2]; x[(x_dim1 << 1) + 2] = tmp[3]; /* Computing MAX */ d__1 = abs(tmp[0]) + abs(tmp[2]), d__2 = abs(tmp[1]) + abs(tmp[3]); *xnorm = max(d__1,d__2); return 0; /* End of DLASY2 */ } /* igraphdlasy2_ */