/* -- translated by f2c (version 20191129). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Table of constant values */ static doublereal c_b5 = -1.; static doublereal c_b6 = 1.; static integer c__1 = 1; static doublereal c_b16 = 0.; /* > \brief \b DLATRD reduces the first nb rows and columns of a symmetric/Hermitian matrix A to real tridiago nal form by an orthogonal similarity transformation. =========== DOCUMENTATION =========== Online html documentation available at http://www.netlib.org/lapack/explore-html/ > \htmlonly > Download DLATRD + dependencies > > [TGZ] > > [ZIP] > > [TXT] > \endhtmlonly Definition: =========== SUBROUTINE DLATRD( UPLO, N, NB, A, LDA, E, TAU, W, LDW ) CHARACTER UPLO INTEGER LDA, LDW, N, NB DOUBLE PRECISION A( LDA, * ), E( * ), TAU( * ), W( LDW, * ) > \par Purpose: ============= > > \verbatim > > DLATRD reduces NB rows and columns of a real symmetric matrix A to > symmetric tridiagonal form by an orthogonal similarity > transformation Q**T * A * Q, and returns the matrices V and W which are > needed to apply the transformation to the unreduced part of A. > > If UPLO = 'U', DLATRD reduces the last NB rows and columns of a > matrix, of which the upper triangle is supplied; > if UPLO = 'L', DLATRD reduces the first NB rows and columns of a > matrix, of which the lower triangle is supplied. > > This is an auxiliary routine called by DSYTRD. > \endverbatim Arguments: ========== > \param[in] UPLO > \verbatim > UPLO is CHARACTER*1 > Specifies whether the upper or lower triangular part of the > symmetric matrix A is stored: > = 'U': Upper triangular > = 'L': Lower triangular > \endverbatim > > \param[in] N > \verbatim > N is INTEGER > The order of the matrix A. > \endverbatim > > \param[in] NB > \verbatim > NB is INTEGER > The number of rows and columns to be reduced. > \endverbatim > > \param[in,out] A > \verbatim > A is DOUBLE PRECISION array, dimension (LDA,N) > On entry, the symmetric matrix A. If UPLO = 'U', the leading > n-by-n upper triangular part of A contains the upper > triangular part of the matrix A, and the strictly lower > triangular part of A is not referenced. If UPLO = 'L', the > leading n-by-n lower triangular part of A contains the lower > triangular part of the matrix A, and the strictly upper > triangular part of A is not referenced. > On exit: > if UPLO = 'U', the last NB columns have been reduced to > tridiagonal form, with the diagonal elements overwriting > the diagonal elements of A; the elements above the diagonal > with the array TAU, represent the orthogonal matrix Q as a > product of elementary reflectors; > if UPLO = 'L', the first NB columns have been reduced to > tridiagonal form, with the diagonal elements overwriting > the diagonal elements of A; the elements below the diagonal > with the array TAU, represent the orthogonal matrix Q as a > product of elementary reflectors. > See Further Details. > \endverbatim > > \param[in] LDA > \verbatim > LDA is INTEGER > The leading dimension of the array A. LDA >= (1,N). > \endverbatim > > \param[out] E > \verbatim > E is DOUBLE PRECISION array, dimension (N-1) > If UPLO = 'U', E(n-nb:n-1) contains the superdiagonal > elements of the last NB columns of the reduced matrix; > if UPLO = 'L', E(1:nb) contains the subdiagonal elements of > the first NB columns of the reduced matrix. > \endverbatim > > \param[out] TAU > \verbatim > TAU is DOUBLE PRECISION array, dimension (N-1) > The scalar factors of the elementary reflectors, stored in > TAU(n-nb:n-1) if UPLO = 'U', and in TAU(1:nb) if UPLO = 'L'. > See Further Details. > \endverbatim > > \param[out] W > \verbatim > W is DOUBLE PRECISION array, dimension (LDW,NB) > The n-by-nb matrix W required to update the unreduced part > of A. > \endverbatim > > \param[in] LDW > \verbatim > LDW is INTEGER > The leading dimension of the array W. LDW >= max(1,N). > \endverbatim Authors: ======== > \author Univ. of Tennessee > \author Univ. of California Berkeley > \author Univ. of Colorado Denver > \author NAG Ltd. > \date September 2012 > \ingroup doubleOTHERauxiliary > \par Further Details: ===================== > > \verbatim > > If UPLO = 'U', the matrix Q is represented as a product of elementary > reflectors > > Q = H(n) H(n-1) . . . H(n-nb+1). > > Each H(i) has the form > > H(i) = I - tau * v * v**T > > where tau is a real scalar, and v is a real vector with > v(i:n) = 0 and v(i-1) = 1; v(1:i-1) is stored on exit in A(1:i-1,i), > and tau in TAU(i-1). > > If UPLO = 'L', the matrix Q is represented as a product of elementary > reflectors > > Q = H(1) H(2) . . . H(nb). > > Each H(i) has the form > > H(i) = I - tau * v * v**T > > where tau is a real scalar, and v is a real vector with > v(1:i) = 0 and v(i+1) = 1; v(i+1:n) is stored on exit in A(i+1:n,i), > and tau in TAU(i). > > The elements of the vectors v together form the n-by-nb matrix V > which is needed, with W, to apply the transformation to the unreduced > part of the matrix, using a symmetric rank-2k update of the form: > A := A - V*W**T - W*V**T. > > The contents of A on exit are illustrated by the following examples > with n = 5 and nb = 2: > > if UPLO = 'U': if UPLO = 'L': > > ( a a a v4 v5 ) ( d ) > ( a a v4 v5 ) ( 1 d ) > ( a 1 v5 ) ( v1 1 a ) > ( d 1 ) ( v1 v2 a a ) > ( d ) ( v1 v2 a a a ) > > where d denotes a diagonal element of the reduced matrix, a denotes > an element of the original matrix that is unchanged, and vi denotes > an element of the vector defining H(i). > \endverbatim > ===================================================================== Subroutine */ int igraphdlatrd_(char *uplo, integer *n, integer *nb, doublereal * a, integer *lda, doublereal *e, doublereal *tau, doublereal *w, integer *ldw) { /* System generated locals */ integer a_dim1, a_offset, w_dim1, w_offset, i__1, i__2, i__3; /* Local variables */ integer i__, iw; extern doublereal igraphddot_(integer *, doublereal *, integer *, doublereal *, integer *); doublereal alpha; extern /* Subroutine */ int igraphdscal_(integer *, doublereal *, doublereal *, integer *); extern logical igraphlsame_(char *, char *); extern /* Subroutine */ int igraphdgemv_(char *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *), igraphdaxpy_(integer *, doublereal *, doublereal *, integer *, doublereal *, integer *), igraphdsymv_(char *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *), igraphdlarfg_(integer *, doublereal *, doublereal *, integer *, doublereal *); /* -- LAPACK auxiliary routine (version 3.4.2) -- -- LAPACK is a software package provided by Univ. of Tennessee, -- -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- September 2012 ===================================================================== Quick return if possible Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --e; --tau; w_dim1 = *ldw; w_offset = 1 + w_dim1; w -= w_offset; /* Function Body */ if (*n <= 0) { return 0; } if (igraphlsame_(uplo, "U")) { /* Reduce last NB columns of upper triangle */ i__1 = *n - *nb + 1; for (i__ = *n; i__ >= i__1; --i__) { iw = i__ - *n + *nb; if (i__ < *n) { /* Update A(1:i,i) */ i__2 = *n - i__; igraphdgemv_("No transpose", &i__, &i__2, &c_b5, &a[(i__ + 1) * a_dim1 + 1], lda, &w[i__ + (iw + 1) * w_dim1], ldw, & c_b6, &a[i__ * a_dim1 + 1], &c__1); i__2 = *n - i__; igraphdgemv_("No transpose", &i__, &i__2, &c_b5, &w[(iw + 1) * w_dim1 + 1], ldw, &a[i__ + (i__ + 1) * a_dim1], lda, & c_b6, &a[i__ * a_dim1 + 1], &c__1); } if (i__ > 1) { /* Generate elementary reflector H(i) to annihilate A(1:i-2,i) */ i__2 = i__ - 1; igraphdlarfg_(&i__2, &a[i__ - 1 + i__ * a_dim1], &a[i__ * a_dim1 + 1], &c__1, &tau[i__ - 1]); e[i__ - 1] = a[i__ - 1 + i__ * a_dim1]; a[i__ - 1 + i__ * a_dim1] = 1.; /* Compute W(1:i-1,i) */ i__2 = i__ - 1; igraphdsymv_("Upper", &i__2, &c_b6, &a[a_offset], lda, &a[i__ * a_dim1 + 1], &c__1, &c_b16, &w[iw * w_dim1 + 1], & c__1); if (i__ < *n) { i__2 = i__ - 1; i__3 = *n - i__; igraphdgemv_("Transpose", &i__2, &i__3, &c_b6, &w[(iw + 1) * w_dim1 + 1], ldw, &a[i__ * a_dim1 + 1], &c__1, & c_b16, &w[i__ + 1 + iw * w_dim1], &c__1); i__2 = i__ - 1; i__3 = *n - i__; igraphdgemv_("No transpose", &i__2, &i__3, &c_b5, &a[(i__ + 1) * a_dim1 + 1], lda, &w[i__ + 1 + iw * w_dim1], & c__1, &c_b6, &w[iw * w_dim1 + 1], &c__1); i__2 = i__ - 1; i__3 = *n - i__; igraphdgemv_("Transpose", &i__2, &i__3, &c_b6, &a[(i__ + 1) * a_dim1 + 1], lda, &a[i__ * a_dim1 + 1], &c__1, & c_b16, &w[i__ + 1 + iw * w_dim1], &c__1); i__2 = i__ - 1; i__3 = *n - i__; igraphdgemv_("No transpose", &i__2, &i__3, &c_b5, &w[(iw + 1) * w_dim1 + 1], ldw, &w[i__ + 1 + iw * w_dim1], & c__1, &c_b6, &w[iw * w_dim1 + 1], &c__1); } i__2 = i__ - 1; igraphdscal_(&i__2, &tau[i__ - 1], &w[iw * w_dim1 + 1], &c__1); i__2 = i__ - 1; alpha = tau[i__ - 1] * -.5 * igraphddot_(&i__2, &w[iw * w_dim1 + 1], &c__1, &a[i__ * a_dim1 + 1], &c__1); i__2 = i__ - 1; igraphdaxpy_(&i__2, &alpha, &a[i__ * a_dim1 + 1], &c__1, &w[iw * w_dim1 + 1], &c__1); } /* L10: */ } } else { /* Reduce first NB columns of lower triangle */ i__1 = *nb; for (i__ = 1; i__ <= i__1; ++i__) { /* Update A(i:n,i) */ i__2 = *n - i__ + 1; i__3 = i__ - 1; igraphdgemv_("No transpose", &i__2, &i__3, &c_b5, &a[i__ + a_dim1], lda, &w[i__ + w_dim1], ldw, &c_b6, &a[i__ + i__ * a_dim1], & c__1); i__2 = *n - i__ + 1; i__3 = i__ - 1; igraphdgemv_("No transpose", &i__2, &i__3, &c_b5, &w[i__ + w_dim1], ldw, &a[i__ + a_dim1], lda, &c_b6, &a[i__ + i__ * a_dim1], & c__1); if (i__ < *n) { /* Generate elementary reflector H(i) to annihilate A(i+2:n,i) */ i__2 = *n - i__; /* Computing MIN */ i__3 = i__ + 2; igraphdlarfg_(&i__2, &a[i__ + 1 + i__ * a_dim1], &a[min(i__3,*n) + i__ * a_dim1], &c__1, &tau[i__]); e[i__] = a[i__ + 1 + i__ * a_dim1]; a[i__ + 1 + i__ * a_dim1] = 1.; /* Compute W(i+1:n,i) */ i__2 = *n - i__; igraphdsymv_("Lower", &i__2, &c_b6, &a[i__ + 1 + (i__ + 1) * a_dim1] , lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b16, &w[ i__ + 1 + i__ * w_dim1], &c__1); i__2 = *n - i__; i__3 = i__ - 1; igraphdgemv_("Transpose", &i__2, &i__3, &c_b6, &w[i__ + 1 + w_dim1], ldw, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b16, &w[ i__ * w_dim1 + 1], &c__1); i__2 = *n - i__; i__3 = i__ - 1; igraphdgemv_("No transpose", &i__2, &i__3, &c_b5, &a[i__ + 1 + a_dim1], lda, &w[i__ * w_dim1 + 1], &c__1, &c_b6, &w[ i__ + 1 + i__ * w_dim1], &c__1); i__2 = *n - i__; i__3 = i__ - 1; igraphdgemv_("Transpose", &i__2, &i__3, &c_b6, &a[i__ + 1 + a_dim1], lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b16, &w[ i__ * w_dim1 + 1], &c__1); i__2 = *n - i__; i__3 = i__ - 1; igraphdgemv_("No transpose", &i__2, &i__3, &c_b5, &w[i__ + 1 + w_dim1], ldw, &w[i__ * w_dim1 + 1], &c__1, &c_b6, &w[ i__ + 1 + i__ * w_dim1], &c__1); i__2 = *n - i__; igraphdscal_(&i__2, &tau[i__], &w[i__ + 1 + i__ * w_dim1], &c__1); i__2 = *n - i__; alpha = tau[i__] * -.5 * igraphddot_(&i__2, &w[i__ + 1 + i__ * w_dim1], &c__1, &a[i__ + 1 + i__ * a_dim1], &c__1); i__2 = *n - i__; igraphdaxpy_(&i__2, &alpha, &a[i__ + 1 + i__ * a_dim1], &c__1, &w[ i__ + 1 + i__ * w_dim1], &c__1); } /* L20: */ } } return 0; /* End of DLATRD */ } /* igraphdlatrd_ */