/* -- translated by f2c (version 20191129). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Table of constant values */ static integer c__1 = 1; /* \BeginDoc \Name: dnaupd \Description: Reverse communication interface for the Implicitly Restarted Arnoldi iteration. This subroutine computes approximations to a few eigenpairs of a linear operator "OP" with respect to a semi-inner product defined by a symmetric positive semi-definite real matrix B. B may be the identity matrix. NOTE: If the linear operator "OP" is real and symmetric with respect to the real positive semi-definite symmetric matrix B, i.e. B*OP = (OP')*B, then subroutine ssaupd should be used instead. The computed approximate eigenvalues are called Ritz values and the corresponding approximate eigenvectors are called Ritz vectors. dnaupd is usually called iteratively to solve one of the following problems: Mode 1: A*x = lambda*x. ===> OP = A and B = I. Mode 2: A*x = lambda*M*x, M symmetric positive definite ===> OP = inv[M]*A and B = M. ===> (If M can be factored see remark 3 below) Mode 3: A*x = lambda*M*x, M symmetric semi-definite ===> OP = Real_Part{ inv[A - sigma*M]*M } and B = M. ===> shift-and-invert mode (in real arithmetic) If OP*x = amu*x, then amu = 1/2 * [ 1/(lambda-sigma) + 1/(lambda-conjg(sigma)) ]. Note: If sigma is real, i.e. imaginary part of sigma is zero; Real_Part{ inv[A - sigma*M]*M } == inv[A - sigma*M]*M amu == 1/(lambda-sigma). Mode 4: A*x = lambda*M*x, M symmetric semi-definite ===> OP = Imaginary_Part{ inv[A - sigma*M]*M } and B = M. ===> shift-and-invert mode (in real arithmetic) If OP*x = amu*x, then amu = 1/2i * [ 1/(lambda-sigma) - 1/(lambda-conjg(sigma)) ]. Both mode 3 and 4 give the same enhancement to eigenvalues close to the (complex) shift sigma. However, as lambda goes to infinity, the operator OP in mode 4 dampens the eigenvalues more strongly than does OP defined in mode 3. NOTE: The action of w <- inv[A - sigma*M]*v or w <- inv[M]*v should be accomplished either by a direct method using a sparse matrix factorization and solving [A - sigma*M]*w = v or M*w = v, or through an iterative method for solving these systems. If an iterative method is used, the convergence test must be more stringent than the accuracy requirements for the eigenvalue approximations. \Usage: call dnaupd ( IDO, BMAT, N, WHICH, NEV, TOL, RESID, NCV, V, LDV, IPARAM, IPNTR, WORKD, WORKL, LWORKL, INFO ) \Arguments IDO Integer. (INPUT/OUTPUT) Reverse communication flag. IDO must be zero on the first call to dnaupd. IDO will be set internally to indicate the type of operation to be performed. Control is then given back to the calling routine which has the responsibility to carry out the requested operation and call dnaupd with the result. The operand is given in WORKD(IPNTR(1)), the result must be put in WORKD(IPNTR(2)). ------------------------------------------------------------- IDO = 0: first call to the reverse communication interface IDO = -1: compute Y = OP * X where IPNTR(1) is the pointer into WORKD for X, IPNTR(2) is the pointer into WORKD for Y. This is for the initialization phase to force the starting vector into the range of OP. IDO = 1: compute Y = OP * X where IPNTR(1) is the pointer into WORKD for X, IPNTR(2) is the pointer into WORKD for Y. In mode 3 and 4, the vector B * X is already available in WORKD(ipntr(3)). It does not need to be recomputed in forming OP * X. IDO = 2: compute Y = B * X where IPNTR(1) is the pointer into WORKD for X, IPNTR(2) is the pointer into WORKD for Y. IDO = 3: compute the IPARAM(8) real and imaginary parts of the shifts where INPTR(14) is the pointer into WORKL for placing the shifts. See Remark 5 below. IDO = 99: done ------------------------------------------------------------- BMAT Character*1. (INPUT) BMAT specifies the type of the matrix B that defines the semi-inner product for the operator OP. BMAT = 'I' -> standard eigenvalue problem A*x = lambda*x BMAT = 'G' -> generalized eigenvalue problem A*x = lambda*B*x N Integer. (INPUT) Dimension of the eigenproblem. WHICH Character*2. (INPUT) 'LM' -> want the NEV eigenvalues of largest magnitude. 'SM' -> want the NEV eigenvalues of smallest magnitude. 'LR' -> want the NEV eigenvalues of largest real part. 'SR' -> want the NEV eigenvalues of smallest real part. 'LI' -> want the NEV eigenvalues of largest imaginary part. 'SI' -> want the NEV eigenvalues of smallest imaginary part. NEV Integer. (INPUT) Number of eigenvalues of OP to be computed. 0 < NEV < N-1. TOL Double precision scalar. (INPUT) Stopping criterion: the relative accuracy of the Ritz value is considered acceptable if BOUNDS(I) .LE. TOL*ABS(RITZ(I)) where ABS(RITZ(I)) is the magnitude when RITZ(I) is complex. DEFAULT = DLAMCH('EPS') (machine precision as computed by the LAPACK auxiliary subroutine DLAMCH). RESID Double precision array of length N. (INPUT/OUTPUT) On INPUT: If INFO .EQ. 0, a random initial residual vector is used. If INFO .NE. 0, RESID contains the initial residual vector, possibly from a previous run. On OUTPUT: RESID contains the final residual vector. NCV Integer. (INPUT) Number of columns of the matrix V. NCV must satisfy the two inequalities 2 <= NCV-NEV and NCV <= N. This will indicate how many Arnoldi vectors are generated at each iteration. After the startup phase in which NEV Arnoldi vectors are generated, the algorithm generates approximately NCV-NEV Arnoldi vectors at each subsequent update iteration. Most of the cost in generating each Arnoldi vector is in the matrix-vector operation OP*x. NOTE: 2 <= NCV-NEV in order that complex conjugate pairs of Ritz values are kept together. (See remark 4 below) V Double precision array N by NCV. (OUTPUT) Contains the final set of Arnoldi basis vectors. LDV Integer. (INPUT) Leading dimension of V exactly as declared in the calling program. IPARAM Integer array of length 11. (INPUT/OUTPUT) IPARAM(1) = ISHIFT: method for selecting the implicit shifts. The shifts selected at each iteration are used to restart the Arnoldi iteration in an implicit fashion. ------------------------------------------------------------- ISHIFT = 0: the shifts are provided by the user via reverse communication. The real and imaginary parts of the NCV eigenvalues of the Hessenberg matrix H are returned in the part of the WORKL array corresponding to RITZR and RITZI. See remark 5 below. ISHIFT = 1: exact shifts with respect to the current Hessenberg matrix H. This is equivalent to restarting the iteration with a starting vector that is a linear combination of approximate Schur vectors associated with the "wanted" Ritz values. ------------------------------------------------------------- IPARAM(2) = No longer referenced. IPARAM(3) = MXITER On INPUT: maximum number of Arnoldi update iterations allowed. On OUTPUT: actual number of Arnoldi update iterations taken. IPARAM(4) = NB: blocksize to be used in the recurrence. The code currently works only for NB = 1. IPARAM(5) = NCONV: number of "converged" Ritz values. This represents the number of Ritz values that satisfy the convergence criterion. IPARAM(6) = IUPD No longer referenced. Implicit restarting is ALWAYS used. IPARAM(7) = MODE On INPUT determines what type of eigenproblem is being solved. Must be 1,2,3,4; See under \Description of dnaupd for the four modes available. IPARAM(8) = NP When ido = 3 and the user provides shifts through reverse communication (IPARAM(1)=0), dnaupd returns NP, the number of shifts the user is to provide. 0 < NP <=NCV-NEV. See Remark 5 below. IPARAM(9) = NUMOP, IPARAM(10) = NUMOPB, IPARAM(11) = NUMREO, OUTPUT: NUMOP = total number of OP*x operations, NUMOPB = total number of B*x operations if BMAT='G', NUMREO = total number of steps of re-orthogonalization. IPNTR Integer array of length 14. (OUTPUT) Pointer to mark the starting locations in the WORKD and WORKL arrays for matrices/vectors used by the Arnoldi iteration. ------------------------------------------------------------- IPNTR(1): pointer to the current operand vector X in WORKD. IPNTR(2): pointer to the current result vector Y in WORKD. IPNTR(3): pointer to the vector B * X in WORKD when used in the shift-and-invert mode. IPNTR(4): pointer to the next available location in WORKL that is untouched by the program. IPNTR(5): pointer to the NCV by NCV upper Hessenberg matrix H in WORKL. IPNTR(6): pointer to the real part of the ritz value array RITZR in WORKL. IPNTR(7): pointer to the imaginary part of the ritz value array RITZI in WORKL. IPNTR(8): pointer to the Ritz estimates in array WORKL associated with the Ritz values located in RITZR and RITZI in WORKL. IPNTR(14): pointer to the NP shifts in WORKL. See Remark 5 below. Note: IPNTR(9:13) is only referenced by dneupd. See Remark 2 below. IPNTR(9): pointer to the real part of the NCV RITZ values of the original system. IPNTR(10): pointer to the imaginary part of the NCV RITZ values of the original system. IPNTR(11): pointer to the NCV corresponding error bounds. IPNTR(12): pointer to the NCV by NCV upper quasi-triangular Schur matrix for H. IPNTR(13): pointer to the NCV by NCV matrix of eigenvectors of the upper Hessenberg matrix H. Only referenced by dneupd if RVEC = .TRUE. See Remark 2 below. ------------------------------------------------------------- WORKD Double precision work array of length 3*N. (REVERSE COMMUNICATION) Distributed array to be used in the basic Arnoldi iteration for reverse communication. The user should not use WORKD as temporary workspace during the iteration. Upon termination WORKD(1:N) contains B*RESID(1:N). If an invariant subspace associated with the converged Ritz values is desired, see remark 2 below, subroutine dneupd uses this output. See Data Distribution Note below. WORKL Double precision work array of length LWORKL. (OUTPUT/WORKSPACE) Private (replicated) array on each PE or array allocated on the front end. See Data Distribution Note below. LWORKL Integer. (INPUT) LWORKL must be at least 3*NCV**2 + 6*NCV. INFO Integer. (INPUT/OUTPUT) If INFO .EQ. 0, a randomly initial residual vector is used. If INFO .NE. 0, RESID contains the initial residual vector, possibly from a previous run. Error flag on output. = 0: Normal exit. = 1: Maximum number of iterations taken. All possible eigenvalues of OP has been found. IPARAM(5) returns the number of wanted converged Ritz values. = 2: No longer an informational error. Deprecated starting with release 2 of ARPACK. = 3: No shifts could be applied during a cycle of the Implicitly restarted Arnoldi iteration. One possibility is to increase the size of NCV relative to NEV. See remark 4 below. = -1: N must be positive. = -2: NEV must be positive. = -3: NCV-NEV >= 2 and less than or equal to N. = -4: The maximum number of Arnoldi update iteration must be greater than zero. = -5: WHICH must be one of 'LM', 'SM', 'LR', 'SR', 'LI', 'SI' = -6: BMAT must be one of 'I' or 'G'. = -7: Length of private work array is not sufficient. = -8: Error return from LAPACK eigenvalue calculation; = -9: Starting vector is zero. = -10: IPARAM(7) must be 1,2,3,4. = -11: IPARAM(7) = 1 and BMAT = 'G' are incompatable. = -12: IPARAM(1) must be equal to 0 or 1. = -9999: Could not build an Arnoldi factorization. IPARAM(5) returns the size of the current Arnoldi factorization. \Remarks 1. The computed Ritz values are approximate eigenvalues of OP. The selection of WHICH should be made with this in mind when Mode = 3 and 4. After convergence, approximate eigenvalues of the original problem may be obtained with the ARPACK subroutine dneupd. 2. If a basis for the invariant subspace corresponding to the converged Ritz values is needed, the user must call dneupd immediately following completion of dnaupd. This is new starting with release 2 of ARPACK. 3. If M can be factored into a Cholesky factorization M = LL' then Mode = 2 should not be selected. Instead one should use Mode = 1 with OP = inv(L)*A*inv(L'). Appropriate triangular linear systems should be solved with L and L' rather than computing inverses. After convergence, an approximate eigenvector z of the original problem is recovered by solving L'z = x where x is a Ritz vector of OP. 4. At present there is no a-priori analysis to guide the selection of NCV relative to NEV. The only formal requrement is that NCV > NEV + 2. However, it is recommended that NCV .ge. 2*NEV+1. If many problems of the same type are to be solved, one should experiment with increasing NCV while keeping NEV fixed for a given test problem. This will usually decrease the required number of OP*x operations but it also increases the work and storage required to maintain the orthogonal basis vectors. The optimal "cross-over" with respect to CPU time is problem dependent and must be determined empirically. See Chapter 8 of Reference 2 for further information. 5. When IPARAM(1) = 0, and IDO = 3, the user needs to provide the NP = IPARAM(8) real and imaginary parts of the shifts in locations real part imaginary part ----------------------- -------------- 1 WORKL(IPNTR(14)) WORKL(IPNTR(14)+NP) 2 WORKL(IPNTR(14)+1) WORKL(IPNTR(14)+NP+1) . . . . . . NP WORKL(IPNTR(14)+NP-1) WORKL(IPNTR(14)+2*NP-1). Only complex conjugate pairs of shifts may be applied and the pairs must be placed in consecutive locations. The real part of the eigenvalues of the current upper Hessenberg matrix are located in WORKL(IPNTR(6)) through WORKL(IPNTR(6)+NCV-1) and the imaginary part in WORKL(IPNTR(7)) through WORKL(IPNTR(7)+NCV-1). They are ordered according to the order defined by WHICH. The complex conjugate pairs are kept together and the associated Ritz estimates are located in WORKL(IPNTR(8)), WORKL(IPNTR(8)+1), ... , WORKL(IPNTR(8)+NCV-1). ----------------------------------------------------------------------- \Data Distribution Note: Fortran-D syntax: ================ Double precision resid(n), v(ldv,ncv), workd(3*n), workl(lworkl) decompose d1(n), d2(n,ncv) align resid(i) with d1(i) align v(i,j) with d2(i,j) align workd(i) with d1(i) range (1:n) align workd(i) with d1(i-n) range (n+1:2*n) align workd(i) with d1(i-2*n) range (2*n+1:3*n) distribute d1(block), d2(block,:) replicated workl(lworkl) Cray MPP syntax: =============== Double precision resid(n), v(ldv,ncv), workd(n,3), workl(lworkl) shared resid(block), v(block,:), workd(block,:) replicated workl(lworkl) CM2/CM5 syntax: ============== ----------------------------------------------------------------------- include 'ex-nonsym.doc' ----------------------------------------------------------------------- \BeginLib \Local variables: xxxxxx real \References: 1. D.C. Sorensen, "Implicit Application of Polynomial Filters in a k-Step Arnoldi Method", SIAM J. Matr. Anal. Apps., 13 (1992), pp 357-385. 2. R.B. Lehoucq, "Analysis and Implementation of an Implicitly Restarted Arnoldi Iteration", Rice University Technical Report TR95-13, Department of Computational and Applied Mathematics. 3. B.N. Parlett & Y. Saad, "Complex Shift and Invert Strategies for Real Matrices", Linear Algebra and its Applications, vol 88/89, pp 575-595, (1987). \Routines called: dnaup2 ARPACK routine that implements the Implicitly Restarted Arnoldi Iteration. ivout ARPACK utility routine that prints integers. second ARPACK utility routine for timing. dvout ARPACK utility routine that prints vectors. dlamch LAPACK routine that determines machine constants. \Author Danny Sorensen Phuong Vu Richard Lehoucq CRPC / Rice University Dept. of Computational & Houston, Texas Applied Mathematics Rice University Houston, Texas \Revision history: 12/16/93: Version '1.1' \SCCS Information: @(#) FILE: naupd.F SID: 2.5 DATE OF SID: 8/27/96 RELEASE: 2 \Remarks \EndLib ----------------------------------------------------------------------- Subroutine */ int igraphdnaupd_(integer *ido, char *bmat, integer *n, char * which, integer *nev, doublereal *tol, doublereal *resid, integer *ncv, doublereal *v, integer *ldv, integer *iparam, integer *ipntr, doublereal *workd, doublereal *workl, integer *lworkl, integer *info) { /* Format strings */ static char fmt_1000[] = "(//,5x,\002===================================" "==========\002,/5x,\002= Nonsymmetric implicit Arnoldi update co" "de =\002,/5x,\002= Version Number: \002,\002 2.4\002,21x,\002 " "=\002,/5x,\002= Version Date: \002,\002 07/31/96\002,16x,\002 =" "\002,/5x,\002=============================================\002,/" "5x,\002= Summary of timing statistics =\002,/5x," "\002=============================================\002,//)"; static char fmt_1100[] = "(5x,\002Total number update iterations " " = \002,i5,/5x,\002Total number of OP*x operations " " = \002,i5,/5x,\002Total number of B*x operations = " "\002,i5,/5x,\002Total number of reorthogonalization steps = " "\002,i5,/5x,\002Total number of iterative refinement steps = " "\002,i5,/5x,\002Total number of restart steps = " "\002,i5,/5x,\002Total time in user OP*x operation = " "\002,f12.6,/5x,\002Total time in user B*x operation =" " \002,f12.6,/5x,\002Total time in Arnoldi update routine = " "\002,f12.6,/5x,\002Total time in naup2 routine =" " \002,f12.6,/5x,\002Total time in basic Arnoldi iteration loop = " "\002,f12.6,/5x,\002Total time in reorthogonalization phase =" " \002,f12.6,/5x,\002Total time in (re)start vector generation = " "\002,f12.6,/5x,\002Total time in Hessenberg eig. subproblem =" " \002,f12.6,/5x,\002Total time in getting the shifts = " "\002,f12.6,/5x,\002Total time in applying the shifts =" " \002,f12.6,/5x,\002Total time in convergence testing = " "\002,f12.6,/5x,\002Total time in computing final Ritz vectors =" " \002,f12.6/)"; /* System generated locals */ integer v_dim1, v_offset, i__1, i__2; /* Builtin functions */ integer s_cmp(char *, char *, ftnlen, ftnlen), s_wsfe(cilist *), e_wsfe( void), do_fio(integer *, char *, ftnlen); /* Local variables */ integer j; IGRAPH_F77_SAVE real t0, t1; IGRAPH_F77_SAVE integer nb, ih, iq, np, iw, ldh, ldq; integer nbx = 0; IGRAPH_F77_SAVE integer nev0, mode; integer ierr; IGRAPH_F77_SAVE integer iupd, next; integer nopx = 0; IGRAPH_F77_SAVE integer levec; real trvec, tmvbx; IGRAPH_F77_SAVE integer ritzi; extern /* Subroutine */ int igraphdvout_(integer *, integer *, doublereal *, integer *, char *, ftnlen), igraphivout_(integer *, integer *, integer * , integer *, char *, ftnlen); IGRAPH_F77_SAVE integer ritzr; extern /* Subroutine */ int igraphdnaup2_(integer *, char *, integer *, char *, integer *, integer *, doublereal *, doublereal *, integer *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *); real tnaup2, tgetv0; extern doublereal igraphdlamch_(char *); extern /* Subroutine */ int igraphsecond_(real *); integer logfil, ndigit; real tneigh; integer mnaupd = 0; IGRAPH_F77_SAVE integer ishift; integer nitref; IGRAPH_F77_SAVE integer bounds; real tnaupd; extern /* Subroutine */ int igraphdstatn_(void); real titref, tnaitr; IGRAPH_F77_SAVE integer msglvl; real tngets, tnapps, tnconv; IGRAPH_F77_SAVE integer mxiter; integer nrorth = 0, nrstrt = 0; real tmvopx; /* Fortran I/O blocks */ static cilist io___30 = { 0, 6, 0, fmt_1000, 0 }; static cilist io___31 = { 0, 6, 0, fmt_1100, 0 }; /* %----------------------------------------------------% | Include files for debugging and timing information | %----------------------------------------------------% %------------------% | Scalar Arguments | %------------------% %-----------------% | Array Arguments | %-----------------% %------------% | Parameters | %------------% %---------------% | Local Scalars | %---------------% %----------------------% | External Subroutines | %----------------------% %--------------------% | External Functions | %--------------------% %-----------------------% | Executable Statements | %-----------------------% Parameter adjustments */ --workd; --resid; v_dim1 = *ldv; v_offset = 1 + v_dim1; v -= v_offset; --iparam; --ipntr; --workl; /* Function Body */ if (*ido == 0) { /* %-------------------------------% | Initialize timing statistics | | & message level for debugging | %-------------------------------% */ igraphdstatn_(); igraphsecond_(&t0); msglvl = mnaupd; /* %----------------% | Error checking | %----------------% */ ierr = 0; ishift = iparam[1]; levec = iparam[2]; mxiter = iparam[3]; nb = iparam[4]; /* %--------------------------------------------% | Revision 2 performs only implicit restart. | %--------------------------------------------% */ iupd = 1; mode = iparam[7]; if (*n <= 0) { ierr = -1; } else if (*nev <= 0) { ierr = -2; } else if (*ncv <= *nev + 1 || *ncv > *n) { ierr = -3; } else if (mxiter <= 0) { ierr = -4; } else if (s_cmp(which, "LM", (ftnlen)2, (ftnlen)2) != 0 && s_cmp( which, "SM", (ftnlen)2, (ftnlen)2) != 0 && s_cmp(which, "LR", (ftnlen)2, (ftnlen)2) != 0 && s_cmp(which, "SR", (ftnlen)2, ( ftnlen)2) != 0 && s_cmp(which, "LI", (ftnlen)2, (ftnlen)2) != 0 && s_cmp(which, "SI", (ftnlen)2, (ftnlen)2) != 0) { ierr = -5; } else if (*(unsigned char *)bmat != 'I' && *(unsigned char *)bmat != 'G') { ierr = -6; } else /* if(complicated condition) */ { /* Computing 2nd power */ i__1 = *ncv; if (*lworkl < i__1 * i__1 * 3 + *ncv * 6) { ierr = -7; } else if (mode < 1 || mode > 5) { ierr = -10; } else if (mode == 1 && *(unsigned char *)bmat == 'G') { ierr = -11; } else if (ishift < 0 || ishift > 1) { ierr = -12; } } /* %------------% | Error Exit | %------------% */ if (ierr != 0) { *info = ierr; *ido = 99; goto L9000; } /* %------------------------% | Set default parameters | %------------------------% */ if (nb <= 0) { nb = 1; } if (*tol <= 0.) { *tol = igraphdlamch_("EpsMach"); } /* %----------------------------------------------% | NP is the number of additional steps to | | extend the length NEV Lanczos factorization. | | NEV0 is the local variable designating the | | size of the invariant subspace desired. | %----------------------------------------------% */ np = *ncv - *nev; nev0 = *nev; /* %-----------------------------% | Zero out internal workspace | %-----------------------------% Computing 2nd power */ i__2 = *ncv; i__1 = i__2 * i__2 * 3 + *ncv * 6; for (j = 1; j <= i__1; ++j) { workl[j] = 0.; /* L10: */ } /* %-------------------------------------------------------------% | Pointer into WORKL for address of H, RITZ, BOUNDS, Q | | etc... and the remaining workspace. | | Also update pointer to be used on output. | | Memory is laid out as follows: | | workl(1:ncv*ncv) := generated Hessenberg matrix | | workl(ncv*ncv+1:ncv*ncv+2*ncv) := real and imaginary | | parts of ritz values | | workl(ncv*ncv+2*ncv+1:ncv*ncv+3*ncv) := error bounds | | workl(ncv*ncv+3*ncv+1:2*ncv*ncv+3*ncv) := rotation matrix Q | | workl(2*ncv*ncv+3*ncv+1:3*ncv*ncv+6*ncv) := workspace | | The final workspace is needed by subroutine dneigh called | | by dnaup2. Subroutine dneigh calls LAPACK routines for | | calculating eigenvalues and the last row of the eigenvector | | matrix. | %-------------------------------------------------------------% */ ldh = *ncv; ldq = *ncv; ih = 1; ritzr = ih + ldh * *ncv; ritzi = ritzr + *ncv; bounds = ritzi + *ncv; iq = bounds + *ncv; iw = iq + ldq * *ncv; /* Computing 2nd power */ i__1 = *ncv; next = iw + i__1 * i__1 + *ncv * 3; ipntr[4] = next; ipntr[5] = ih; ipntr[6] = ritzr; ipntr[7] = ritzi; ipntr[8] = bounds; ipntr[14] = iw; } /* %-------------------------------------------------------% | Carry out the Implicitly restarted Arnoldi Iteration. | %-------------------------------------------------------% */ igraphdnaup2_(ido, bmat, n, which, &nev0, &np, tol, &resid[1], &mode, &iupd, & ishift, &mxiter, &v[v_offset], ldv, &workl[ih], &ldh, &workl[ ritzr], &workl[ritzi], &workl[bounds], &workl[iq], &ldq, &workl[ iw], &ipntr[1], &workd[1], info); /* %--------------------------------------------------% | ido .ne. 99 implies use of reverse communication | | to compute operations involving OP or shifts. | %--------------------------------------------------% */ if (*ido == 3) { iparam[8] = np; } if (*ido != 99) { goto L9000; } iparam[3] = mxiter; iparam[5] = np; iparam[9] = nopx; iparam[10] = nbx; iparam[11] = nrorth; /* %------------------------------------% | Exit if there was an informational | | error within dnaup2. | %------------------------------------% */ if (*info < 0) { goto L9000; } if (*info == 2) { *info = 3; } if (msglvl > 0) { igraphivout_(&logfil, &c__1, &mxiter, &ndigit, "_naupd: Number of update i" "terations taken", (ftnlen)41); igraphivout_(&logfil, &c__1, &np, &ndigit, "_naupd: Number of wanted \"con" "verged\" Ritz values", (ftnlen)48); igraphdvout_(&logfil, &np, &workl[ritzr], &ndigit, "_naupd: Real part of t" "he final Ritz values", (ftnlen)42); igraphdvout_(&logfil, &np, &workl[ritzi], &ndigit, "_naupd: Imaginary part" " of the final Ritz values", (ftnlen)47); igraphdvout_(&logfil, &np, &workl[bounds], &ndigit, "_naupd: Associated Ri" "tz estimates", (ftnlen)33); } igraphsecond_(&t1); tnaupd = t1 - t0; if (msglvl > 0) { /* %--------------------------------------------------------% | Version Number & Version Date are defined in version.h | %--------------------------------------------------------% */ s_wsfe(&io___30); e_wsfe(); s_wsfe(&io___31); do_fio(&c__1, (char *)&mxiter, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&nopx, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&nbx, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&nrorth, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&nitref, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&nrstrt, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&tmvopx, (ftnlen)sizeof(real)); do_fio(&c__1, (char *)&tmvbx, (ftnlen)sizeof(real)); do_fio(&c__1, (char *)&tnaupd, (ftnlen)sizeof(real)); do_fio(&c__1, (char *)&tnaup2, (ftnlen)sizeof(real)); do_fio(&c__1, (char *)&tnaitr, (ftnlen)sizeof(real)); do_fio(&c__1, (char *)&titref, (ftnlen)sizeof(real)); do_fio(&c__1, (char *)&tgetv0, (ftnlen)sizeof(real)); do_fio(&c__1, (char *)&tneigh, (ftnlen)sizeof(real)); do_fio(&c__1, (char *)&tngets, (ftnlen)sizeof(real)); do_fio(&c__1, (char *)&tnapps, (ftnlen)sizeof(real)); do_fio(&c__1, (char *)&tnconv, (ftnlen)sizeof(real)); do_fio(&c__1, (char *)&trvec, (ftnlen)sizeof(real)); e_wsfe(); } L9000: return 0; /* %---------------% | End of dnaupd | %---------------% */ } /* igraphdnaupd_ */