/* -- translated by f2c (version 20191129). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* > \brief \b DNRM2 =========== DOCUMENTATION =========== Online html documentation available at http://www.netlib.org/lapack/explore-html/ Definition: =========== DOUBLE PRECISION FUNCTION DNRM2(N,X,INCX) INTEGER INCX,N DOUBLE PRECISION X(*) > \par Purpose: ============= > > \verbatim > > DNRM2 returns the euclidean norm of a vector via the function > name, so that > > DNRM2 := sqrt( x'*x ) > \endverbatim Arguments: ========== > \param[in] N > \verbatim > N is INTEGER > number of elements in input vector(s) > \endverbatim > > \param[in] X > \verbatim > X is DOUBLE PRECISION array, dimension ( 1 + ( N - 1 )*abs( INCX ) ) > \endverbatim > > \param[in] INCX > \verbatim > INCX is INTEGER > storage spacing between elements of DX > \endverbatim Authors: ======== > \author Univ. of Tennessee > \author Univ. of California Berkeley > \author Univ. of Colorado Denver > \author NAG Ltd. > \date November 2017 > \ingroup double_blas_level1 > \par Further Details: ===================== > > \verbatim > > -- This version written on 25-October-1982. > Modified on 14-October-1993 to inline the call to DLASSQ. > Sven Hammarling, Nag Ltd. > \endverbatim > ===================================================================== */ doublereal igraphdnrm2_(integer *n, doublereal *x, integer *incx) { /* System generated locals */ integer i__1, i__2; doublereal ret_val, d__1; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ integer ix; doublereal ssq, norm, scale, absxi; /* -- Reference BLAS level1 routine (version 3.8.0) -- -- Reference BLAS is a software package provided by Univ. of Tennessee, -- -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- November 2017 ===================================================================== Parameter adjustments */ --x; /* Function Body */ if (*n < 1 || *incx < 1) { norm = 0.; } else if (*n == 1) { norm = abs(x[1]); } else { scale = 0.; ssq = 1.; /* The following loop is equivalent to this call to the LAPACK auxiliary routine: CALL DLASSQ( N, X, INCX, SCALE, SSQ ) */ i__1 = (*n - 1) * *incx + 1; i__2 = *incx; for (ix = 1; i__2 < 0 ? ix >= i__1 : ix <= i__1; ix += i__2) { if (x[ix] != 0.) { absxi = (d__1 = x[ix], abs(d__1)); if (scale < absxi) { /* Computing 2nd power */ d__1 = scale / absxi; ssq = ssq * (d__1 * d__1) + 1.; scale = absxi; } else { /* Computing 2nd power */ d__1 = absxi / scale; ssq += d__1 * d__1; } } /* L10: */ } norm = scale * sqrt(ssq); } ret_val = norm; return ret_val; /* End of DNRM2. */ } /* igraphdnrm2_ */