/* -- translated by f2c (version 20191129). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Table of constant values */ static integer c__1 = 1; /* > \brief \b DORG2R generates all or part of the orthogonal matrix Q from a QR factorization determined by s geqrf (unblocked algorithm). =========== DOCUMENTATION =========== Online html documentation available at http://www.netlib.org/lapack/explore-html/ > \htmlonly > Download DORG2R + dependencies > > [TGZ] > > [ZIP] > > [TXT] > \endhtmlonly Definition: =========== SUBROUTINE DORG2R( M, N, K, A, LDA, TAU, WORK, INFO ) INTEGER INFO, K, LDA, M, N DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * ) > \par Purpose: ============= > > \verbatim > > DORG2R generates an m by n real matrix Q with orthonormal columns, > which is defined as the first n columns of a product of k elementary > reflectors of order m > > Q = H(1) H(2) . . . H(k) > > as returned by DGEQRF. > \endverbatim Arguments: ========== > \param[in] M > \verbatim > M is INTEGER > The number of rows of the matrix Q. M >= 0. > \endverbatim > > \param[in] N > \verbatim > N is INTEGER > The number of columns of the matrix Q. M >= N >= 0. > \endverbatim > > \param[in] K > \verbatim > K is INTEGER > The number of elementary reflectors whose product defines the > matrix Q. N >= K >= 0. > \endverbatim > > \param[in,out] A > \verbatim > A is DOUBLE PRECISION array, dimension (LDA,N) > On entry, the i-th column must contain the vector which > defines the elementary reflector H(i), for i = 1,2,...,k, as > returned by DGEQRF in the first k columns of its array > argument A. > On exit, the m-by-n matrix Q. > \endverbatim > > \param[in] LDA > \verbatim > LDA is INTEGER > The first dimension of the array A. LDA >= max(1,M). > \endverbatim > > \param[in] TAU > \verbatim > TAU is DOUBLE PRECISION array, dimension (K) > TAU(i) must contain the scalar factor of the elementary > reflector H(i), as returned by DGEQRF. > \endverbatim > > \param[out] WORK > \verbatim > WORK is DOUBLE PRECISION array, dimension (N) > \endverbatim > > \param[out] INFO > \verbatim > INFO is INTEGER > = 0: successful exit > < 0: if INFO = -i, the i-th argument has an illegal value > \endverbatim Authors: ======== > \author Univ. of Tennessee > \author Univ. of California Berkeley > \author Univ. of Colorado Denver > \author NAG Ltd. > \date September 2012 > \ingroup doubleOTHERcomputational ===================================================================== Subroutine */ int igraphdorg2r_(integer *m, integer *n, integer *k, doublereal * a, integer *lda, doublereal *tau, doublereal *work, integer *info) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2; doublereal d__1; /* Local variables */ integer i__, j, l; extern /* Subroutine */ int igraphdscal_(integer *, doublereal *, doublereal *, integer *), igraphdlarf_(char *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, doublereal *), igraphxerbla_(char *, integer *, ftnlen); /* -- LAPACK computational routine (version 3.4.2) -- -- LAPACK is a software package provided by Univ. of Tennessee, -- -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- September 2012 ===================================================================== Test the input arguments Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --tau; --work; /* Function Body */ *info = 0; if (*m < 0) { *info = -1; } else if (*n < 0 || *n > *m) { *info = -2; } else if (*k < 0 || *k > *n) { *info = -3; } else if (*lda < max(1,*m)) { *info = -5; } if (*info != 0) { i__1 = -(*info); igraphxerbla_("DORG2R", &i__1, (ftnlen)6); return 0; } /* Quick return if possible */ if (*n <= 0) { return 0; } /* Initialise columns k+1:n to columns of the unit matrix */ i__1 = *n; for (j = *k + 1; j <= i__1; ++j) { i__2 = *m; for (l = 1; l <= i__2; ++l) { a[l + j * a_dim1] = 0.; /* L10: */ } a[j + j * a_dim1] = 1.; /* L20: */ } for (i__ = *k; i__ >= 1; --i__) { /* Apply H(i) to A(i:m,i:n) from the left */ if (i__ < *n) { a[i__ + i__ * a_dim1] = 1.; i__1 = *m - i__ + 1; i__2 = *n - i__; igraphdlarf_("Left", &i__1, &i__2, &a[i__ + i__ * a_dim1], &c__1, &tau[ i__], &a[i__ + (i__ + 1) * a_dim1], lda, &work[1]); } if (i__ < *m) { i__1 = *m - i__; d__1 = -tau[i__]; igraphdscal_(&i__1, &d__1, &a[i__ + 1 + i__ * a_dim1], &c__1); } a[i__ + i__ * a_dim1] = 1. - tau[i__]; /* Set A(1:i-1,i) to zero */ i__1 = i__ - 1; for (l = 1; l <= i__1; ++l) { a[l + i__ * a_dim1] = 0.; /* L30: */ } /* L40: */ } return 0; /* End of DORG2R */ } /* igraphdorg2r_ */