/* -- translated by f2c (version 20191129). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Table of constant values */ static integer c__1 = 1; static integer c_n1 = -1; static integer c__2 = 2; static integer c__65 = 65; /* > \brief \b DORMQL =========== DOCUMENTATION =========== Online html documentation available at http://www.netlib.org/lapack/explore-html/ > \htmlonly > Download DORMQL + dependencies > > [TGZ] > > [ZIP] > > [TXT] > \endhtmlonly Definition: =========== SUBROUTINE DORMQL( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, LWORK, INFO ) CHARACTER SIDE, TRANS INTEGER INFO, K, LDA, LDC, LWORK, M, N DOUBLE PRECISION A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * ) > \par Purpose: ============= > > \verbatim > > DORMQL overwrites the general real M-by-N matrix C with > > SIDE = 'L' SIDE = 'R' > TRANS = 'N': Q * C C * Q > TRANS = 'T': Q**T * C C * Q**T > > where Q is a real orthogonal matrix defined as the product of k > elementary reflectors > > Q = H(k) . . . H(2) H(1) > > as returned by DGEQLF. Q is of order M if SIDE = 'L' and of order N > if SIDE = 'R'. > \endverbatim Arguments: ========== > \param[in] SIDE > \verbatim > SIDE is CHARACTER*1 > = 'L': apply Q or Q**T from the Left; > = 'R': apply Q or Q**T from the Right. > \endverbatim > > \param[in] TRANS > \verbatim > TRANS is CHARACTER*1 > = 'N': No transpose, apply Q; > = 'T': Transpose, apply Q**T. > \endverbatim > > \param[in] M > \verbatim > M is INTEGER > The number of rows of the matrix C. M >= 0. > \endverbatim > > \param[in] N > \verbatim > N is INTEGER > The number of columns of the matrix C. N >= 0. > \endverbatim > > \param[in] K > \verbatim > K is INTEGER > The number of elementary reflectors whose product defines > the matrix Q. > If SIDE = 'L', M >= K >= 0; > if SIDE = 'R', N >= K >= 0. > \endverbatim > > \param[in] A > \verbatim > A is DOUBLE PRECISION array, dimension (LDA,K) > The i-th column must contain the vector which defines the > elementary reflector H(i), for i = 1,2,...,k, as returned by > DGEQLF in the last k columns of its array argument A. > \endverbatim > > \param[in] LDA > \verbatim > LDA is INTEGER > The leading dimension of the array A. > If SIDE = 'L', LDA >= max(1,M); > if SIDE = 'R', LDA >= max(1,N). > \endverbatim > > \param[in] TAU > \verbatim > TAU is DOUBLE PRECISION array, dimension (K) > TAU(i) must contain the scalar factor of the elementary > reflector H(i), as returned by DGEQLF. > \endverbatim > > \param[in,out] C > \verbatim > C is DOUBLE PRECISION array, dimension (LDC,N) > On entry, the M-by-N matrix C. > On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q. > \endverbatim > > \param[in] LDC > \verbatim > LDC is INTEGER > The leading dimension of the array C. LDC >= max(1,M). > \endverbatim > > \param[out] WORK > \verbatim > WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. > \endverbatim > > \param[in] LWORK > \verbatim > LWORK is INTEGER > The dimension of the array WORK. > If SIDE = 'L', LWORK >= max(1,N); > if SIDE = 'R', LWORK >= max(1,M). > For optimum performance LWORK >= N*NB if SIDE = 'L', and > LWORK >= M*NB if SIDE = 'R', where NB is the optimal > blocksize. > > If LWORK = -1, then a workspace query is assumed; the routine > only calculates the optimal size of the WORK array, returns > this value as the first entry of the WORK array, and no error > message related to LWORK is issued by XERBLA. > \endverbatim > > \param[out] INFO > \verbatim > INFO is INTEGER > = 0: successful exit > < 0: if INFO = -i, the i-th argument had an illegal value > \endverbatim Authors: ======== > \author Univ. of Tennessee > \author Univ. of California Berkeley > \author Univ. of Colorado Denver > \author NAG Ltd. > \date November 2011 > \ingroup doubleOTHERcomputational ===================================================================== Subroutine */ int igraphdormql_(char *side, char *trans, integer *m, integer *n, integer *k, doublereal *a, integer *lda, doublereal *tau, doublereal * c__, integer *ldc, doublereal *work, integer *lwork, integer *info) { /* System generated locals */ address a__1[2]; integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3[2], i__4, i__5; char ch__1[2]; /* Builtin functions Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen); /* Local variables */ integer i__; doublereal t[4160] /* was [65][64] */; integer i1, i2, i3, ib, nb, mi, ni, nq, nw, iws; logical left; extern logical igraphlsame_(char *, char *); integer nbmin, iinfo; extern /* Subroutine */ int igraphdorm2l_(char *, char *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *), igraphdlarfb_(char *, char *, char *, char *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *), igraphdlarft_(char *, char *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *), igraphxerbla_(char *, integer *, ftnlen); extern integer igraphilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *, ftnlen, ftnlen); logical notran; integer ldwork, lwkopt; logical lquery; /* -- LAPACK computational routine (version 3.4.0) -- -- LAPACK is a software package provided by Univ. of Tennessee, -- -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- November 2011 ===================================================================== Test the input arguments Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --tau; c_dim1 = *ldc; c_offset = 1 + c_dim1; c__ -= c_offset; --work; /* Function Body */ *info = 0; left = igraphlsame_(side, "L"); notran = igraphlsame_(trans, "N"); lquery = *lwork == -1; /* NQ is the order of Q and NW is the minimum dimension of WORK */ if (left) { nq = *m; nw = max(1,*n); } else { nq = *n; nw = max(1,*m); } if (! left && ! igraphlsame_(side, "R")) { *info = -1; } else if (! notran && ! igraphlsame_(trans, "T")) { *info = -2; } else if (*m < 0) { *info = -3; } else if (*n < 0) { *info = -4; } else if (*k < 0 || *k > nq) { *info = -5; } else if (*lda < max(1,nq)) { *info = -7; } else if (*ldc < max(1,*m)) { *info = -10; } if (*info == 0) { if (*m == 0 || *n == 0) { lwkopt = 1; } else { /* Determine the block size. NB may be at most NBMAX, where NBMAX is used to define the local array T. Computing MIN Writing concatenation */ i__3[0] = 1, a__1[0] = side; i__3[1] = 1, a__1[1] = trans; s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2); i__1 = 64, i__2 = igraphilaenv_(&c__1, "DORMQL", ch__1, m, n, k, &c_n1, (ftnlen)6, (ftnlen)2); nb = min(i__1,i__2); lwkopt = nw * nb; } work[1] = (doublereal) lwkopt; if (*lwork < nw && ! lquery) { *info = -12; } } if (*info != 0) { i__1 = -(*info); igraphxerbla_("DORMQL", &i__1, (ftnlen)6); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*m == 0 || *n == 0) { return 0; } nbmin = 2; ldwork = nw; if (nb > 1 && nb < *k) { iws = nw * nb; if (*lwork < iws) { nb = *lwork / ldwork; /* Computing MAX Writing concatenation */ i__3[0] = 1, a__1[0] = side; i__3[1] = 1, a__1[1] = trans; s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2); i__1 = 2, i__2 = igraphilaenv_(&c__2, "DORMQL", ch__1, m, n, k, &c_n1, ( ftnlen)6, (ftnlen)2); nbmin = max(i__1,i__2); } } else { iws = nw; } if (nb < nbmin || nb >= *k) { /* Use unblocked code */ igraphdorm2l_(side, trans, m, n, k, &a[a_offset], lda, &tau[1], &c__[ c_offset], ldc, &work[1], &iinfo); } else { /* Use blocked code */ if (left && notran || ! left && ! notran) { i1 = 1; i2 = *k; i3 = nb; } else { i1 = (*k - 1) / nb * nb + 1; i2 = 1; i3 = -nb; } if (left) { ni = *n; } else { mi = *m; } i__1 = i2; i__2 = i3; for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) { /* Computing MIN */ i__4 = nb, i__5 = *k - i__ + 1; ib = min(i__4,i__5); /* Form the triangular factor of the block reflector H = H(i+ib-1) . . . H(i+1) H(i) */ i__4 = nq - *k + i__ + ib - 1; igraphdlarft_("Backward", "Columnwise", &i__4, &ib, &a[i__ * a_dim1 + 1] , lda, &tau[i__], t, &c__65); if (left) { /* H or H**T is applied to C(1:m-k+i+ib-1,1:n) */ mi = *m - *k + i__ + ib - 1; } else { /* H or H**T is applied to C(1:m,1:n-k+i+ib-1) */ ni = *n - *k + i__ + ib - 1; } /* Apply H or H**T */ igraphdlarfb_(side, trans, "Backward", "Columnwise", &mi, &ni, &ib, &a[ i__ * a_dim1 + 1], lda, t, &c__65, &c__[c_offset], ldc, & work[1], &ldwork); /* L10: */ } } work[1] = (doublereal) lwkopt; return 0; /* End of DORMQL */ } /* igraphdormql_ */