/* -- translated by f2c (version 20191129).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
/* Table of constant values */
static integer c__1 = 1;
static integer c_n1 = -1;
static integer c__2 = 2;
static integer c__65 = 65;
/* > \brief \b DORMQR
=========== DOCUMENTATION ===========
Online html documentation available at
http://www.netlib.org/lapack/explore-html/
> \htmlonly
> Download DORMQR + dependencies
>
> [TGZ]
>
> [ZIP]
>
> [TXT]
> \endhtmlonly
Definition:
===========
SUBROUTINE DORMQR( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
WORK, LWORK, INFO )
CHARACTER SIDE, TRANS
INTEGER INFO, K, LDA, LDC, LWORK, M, N
DOUBLE PRECISION A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
> \par Purpose:
=============
>
> \verbatim
>
> DORMQR overwrites the general real M-by-N matrix C with
>
> SIDE = 'L' SIDE = 'R'
> TRANS = 'N': Q * C C * Q
> TRANS = 'T': Q**T * C C * Q**T
>
> where Q is a real orthogonal matrix defined as the product of k
> elementary reflectors
>
> Q = H(1) H(2) . . . H(k)
>
> as returned by DGEQRF. Q is of order M if SIDE = 'L' and of order N
> if SIDE = 'R'.
> \endverbatim
Arguments:
==========
> \param[in] SIDE
> \verbatim
> SIDE is CHARACTER*1
> = 'L': apply Q or Q**T from the Left;
> = 'R': apply Q or Q**T from the Right.
> \endverbatim
>
> \param[in] TRANS
> \verbatim
> TRANS is CHARACTER*1
> = 'N': No transpose, apply Q;
> = 'T': Transpose, apply Q**T.
> \endverbatim
>
> \param[in] M
> \verbatim
> M is INTEGER
> The number of rows of the matrix C. M >= 0.
> \endverbatim
>
> \param[in] N
> \verbatim
> N is INTEGER
> The number of columns of the matrix C. N >= 0.
> \endverbatim
>
> \param[in] K
> \verbatim
> K is INTEGER
> The number of elementary reflectors whose product defines
> the matrix Q.
> If SIDE = 'L', M >= K >= 0;
> if SIDE = 'R', N >= K >= 0.
> \endverbatim
>
> \param[in] A
> \verbatim
> A is DOUBLE PRECISION array, dimension (LDA,K)
> The i-th column must contain the vector which defines the
> elementary reflector H(i), for i = 1,2,...,k, as returned by
> DGEQRF in the first k columns of its array argument A.
> \endverbatim
>
> \param[in] LDA
> \verbatim
> LDA is INTEGER
> The leading dimension of the array A.
> If SIDE = 'L', LDA >= max(1,M);
> if SIDE = 'R', LDA >= max(1,N).
> \endverbatim
>
> \param[in] TAU
> \verbatim
> TAU is DOUBLE PRECISION array, dimension (K)
> TAU(i) must contain the scalar factor of the elementary
> reflector H(i), as returned by DGEQRF.
> \endverbatim
>
> \param[in,out] C
> \verbatim
> C is DOUBLE PRECISION array, dimension (LDC,N)
> On entry, the M-by-N matrix C.
> On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
> \endverbatim
>
> \param[in] LDC
> \verbatim
> LDC is INTEGER
> The leading dimension of the array C. LDC >= max(1,M).
> \endverbatim
>
> \param[out] WORK
> \verbatim
> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
> \endverbatim
>
> \param[in] LWORK
> \verbatim
> LWORK is INTEGER
> The dimension of the array WORK.
> If SIDE = 'L', LWORK >= max(1,N);
> if SIDE = 'R', LWORK >= max(1,M).
> For optimum performance LWORK >= N*NB if SIDE = 'L', and
> LWORK >= M*NB if SIDE = 'R', where NB is the optimal
> blocksize.
>
> If LWORK = -1, then a workspace query is assumed; the routine
> only calculates the optimal size of the WORK array, returns
> this value as the first entry of the WORK array, and no error
> message related to LWORK is issued by XERBLA.
> \endverbatim
>
> \param[out] INFO
> \verbatim
> INFO is INTEGER
> = 0: successful exit
> < 0: if INFO = -i, the i-th argument had an illegal value
> \endverbatim
Authors:
========
> \author Univ. of Tennessee
> \author Univ. of California Berkeley
> \author Univ. of Colorado Denver
> \author NAG Ltd.
> \date November 2011
> \ingroup doubleOTHERcomputational
=====================================================================
Subroutine */ int igraphdormqr_(char *side, char *trans, integer *m, integer *n,
integer *k, doublereal *a, integer *lda, doublereal *tau, doublereal *
c__, integer *ldc, doublereal *work, integer *lwork, integer *info)
{
/* System generated locals */
address a__1[2];
integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3[2], i__4,
i__5;
char ch__1[2];
/* Builtin functions
Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);
/* Local variables */
integer i__;
doublereal t[4160] /* was [65][64] */;
integer i1, i2, i3, ib, ic, jc, nb, mi, ni, nq, nw, iws;
logical left;
extern logical igraphlsame_(char *, char *);
integer nbmin, iinfo;
extern /* Subroutine */ int igraphdorm2r_(char *, char *, integer *, integer *,
integer *, doublereal *, integer *, doublereal *, doublereal *,
integer *, doublereal *, integer *), igraphdlarfb_(char
*, char *, char *, char *, integer *, integer *, integer *,
doublereal *, integer *, doublereal *, integer *, doublereal *,
integer *, doublereal *, integer *), igraphdlarft_(char *, char *, integer *, integer *, doublereal
*, integer *, doublereal *, doublereal *, integer *), igraphxerbla_(char *, integer *, ftnlen);
extern integer igraphilaenv_(integer *, char *, char *, integer *, integer *,
integer *, integer *, ftnlen, ftnlen);
logical notran;
integer ldwork, lwkopt;
logical lquery;
/* -- LAPACK computational routine (version 3.4.0) --
-- LAPACK is a software package provided by Univ. of Tennessee, --
-- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
November 2011
=====================================================================
Test the input arguments
Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--tau;
c_dim1 = *ldc;
c_offset = 1 + c_dim1;
c__ -= c_offset;
--work;
/* Function Body */
*info = 0;
left = igraphlsame_(side, "L");
notran = igraphlsame_(trans, "N");
lquery = *lwork == -1;
/* NQ is the order of Q and NW is the minimum dimension of WORK */
if (left) {
nq = *m;
nw = *n;
} else {
nq = *n;
nw = *m;
}
if (! left && ! igraphlsame_(side, "R")) {
*info = -1;
} else if (! notran && ! igraphlsame_(trans, "T")) {
*info = -2;
} else if (*m < 0) {
*info = -3;
} else if (*n < 0) {
*info = -4;
} else if (*k < 0 || *k > nq) {
*info = -5;
} else if (*lda < max(1,nq)) {
*info = -7;
} else if (*ldc < max(1,*m)) {
*info = -10;
} else if (*lwork < max(1,nw) && ! lquery) {
*info = -12;
}
if (*info == 0) {
/* Determine the block size. NB may be at most NBMAX, where NBMAX
is used to define the local array T.
Computing MIN
Writing concatenation */
i__3[0] = 1, a__1[0] = side;
i__3[1] = 1, a__1[1] = trans;
s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
i__1 = 64, i__2 = igraphilaenv_(&c__1, "DORMQR", ch__1, m, n, k, &c_n1, (
ftnlen)6, (ftnlen)2);
nb = min(i__1,i__2);
lwkopt = max(1,nw) * nb;
work[1] = (doublereal) lwkopt;
}
if (*info != 0) {
i__1 = -(*info);
igraphxerbla_("DORMQR", &i__1, (ftnlen)6);
return 0;
} else if (lquery) {
return 0;
}
/* Quick return if possible */
if (*m == 0 || *n == 0 || *k == 0) {
work[1] = 1.;
return 0;
}
nbmin = 2;
ldwork = nw;
if (nb > 1 && nb < *k) {
iws = nw * nb;
if (*lwork < iws) {
nb = *lwork / ldwork;
/* Computing MAX
Writing concatenation */
i__3[0] = 1, a__1[0] = side;
i__3[1] = 1, a__1[1] = trans;
s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
i__1 = 2, i__2 = igraphilaenv_(&c__2, "DORMQR", ch__1, m, n, k, &c_n1, (
ftnlen)6, (ftnlen)2);
nbmin = max(i__1,i__2);
}
} else {
iws = nw;
}
if (nb < nbmin || nb >= *k) {
/* Use unblocked code */
igraphdorm2r_(side, trans, m, n, k, &a[a_offset], lda, &tau[1], &c__[
c_offset], ldc, &work[1], &iinfo);
} else {
/* Use blocked code */
if (left && ! notran || ! left && notran) {
i1 = 1;
i2 = *k;
i3 = nb;
} else {
i1 = (*k - 1) / nb * nb + 1;
i2 = 1;
i3 = -nb;
}
if (left) {
ni = *n;
jc = 1;
} else {
mi = *m;
ic = 1;
}
i__1 = i2;
i__2 = i3;
for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
/* Computing MIN */
i__4 = nb, i__5 = *k - i__ + 1;
ib = min(i__4,i__5);
/* Form the triangular factor of the block reflector
H = H(i) H(i+1) . . . H(i+ib-1) */
i__4 = nq - i__ + 1;
igraphdlarft_("Forward", "Columnwise", &i__4, &ib, &a[i__ + i__ *
a_dim1], lda, &tau[i__], t, &c__65)
;
if (left) {
/* H or H**T is applied to C(i:m,1:n) */
mi = *m - i__ + 1;
ic = i__;
} else {
/* H or H**T is applied to C(1:m,i:n) */
ni = *n - i__ + 1;
jc = i__;
}
/* Apply H or H**T */
igraphdlarfb_(side, trans, "Forward", "Columnwise", &mi, &ni, &ib, &a[
i__ + i__ * a_dim1], lda, t, &c__65, &c__[ic + jc *
c_dim1], ldc, &work[1], &ldwork);
/* L10: */
}
}
work[1] = (doublereal) lwkopt;
return 0;
/* End of DORMQR */
} /* igraphdormqr_ */