/* -- translated by f2c (version 20191129). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Table of constant values */ static integer c__1 = 1; static integer c_n1 = -1; static integer c__2 = 2; /* > \brief \b DORMTR =========== DOCUMENTATION =========== Online html documentation available at http://www.netlib.org/lapack/explore-html/ > \htmlonly > Download DORMTR + dependencies > > [TGZ] > > [ZIP] > > [TXT] > \endhtmlonly Definition: =========== SUBROUTINE DORMTR( SIDE, UPLO, TRANS, M, N, A, LDA, TAU, C, LDC, WORK, LWORK, INFO ) CHARACTER SIDE, TRANS, UPLO INTEGER INFO, LDA, LDC, LWORK, M, N DOUBLE PRECISION A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * ) > \par Purpose: ============= > > \verbatim > > DORMTR overwrites the general real M-by-N matrix C with > > SIDE = 'L' SIDE = 'R' > TRANS = 'N': Q * C C * Q > TRANS = 'T': Q**T * C C * Q**T > > where Q is a real orthogonal matrix of order nq, with nq = m if > SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of > nq-1 elementary reflectors, as returned by DSYTRD: > > if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1); > > if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1). > \endverbatim Arguments: ========== > \param[in] SIDE > \verbatim > SIDE is CHARACTER*1 > = 'L': apply Q or Q**T from the Left; > = 'R': apply Q or Q**T from the Right. > \endverbatim > > \param[in] UPLO > \verbatim > UPLO is CHARACTER*1 > = 'U': Upper triangle of A contains elementary reflectors > from DSYTRD; > = 'L': Lower triangle of A contains elementary reflectors > from DSYTRD. > \endverbatim > > \param[in] TRANS > \verbatim > TRANS is CHARACTER*1 > = 'N': No transpose, apply Q; > = 'T': Transpose, apply Q**T. > \endverbatim > > \param[in] M > \verbatim > M is INTEGER > The number of rows of the matrix C. M >= 0. > \endverbatim > > \param[in] N > \verbatim > N is INTEGER > The number of columns of the matrix C. N >= 0. > \endverbatim > > \param[in] A > \verbatim > A is DOUBLE PRECISION array, dimension > (LDA,M) if SIDE = 'L' > (LDA,N) if SIDE = 'R' > The vectors which define the elementary reflectors, as > returned by DSYTRD. > \endverbatim > > \param[in] LDA > \verbatim > LDA is INTEGER > The leading dimension of the array A. > LDA >= max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE = 'R'. > \endverbatim > > \param[in] TAU > \verbatim > TAU is DOUBLE PRECISION array, dimension > (M-1) if SIDE = 'L' > (N-1) if SIDE = 'R' > TAU(i) must contain the scalar factor of the elementary > reflector H(i), as returned by DSYTRD. > \endverbatim > > \param[in,out] C > \verbatim > C is DOUBLE PRECISION array, dimension (LDC,N) > On entry, the M-by-N matrix C. > On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q. > \endverbatim > > \param[in] LDC > \verbatim > LDC is INTEGER > The leading dimension of the array C. LDC >= max(1,M). > \endverbatim > > \param[out] WORK > \verbatim > WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. > \endverbatim > > \param[in] LWORK > \verbatim > LWORK is INTEGER > The dimension of the array WORK. > If SIDE = 'L', LWORK >= max(1,N); > if SIDE = 'R', LWORK >= max(1,M). > For optimum performance LWORK >= N*NB if SIDE = 'L', and > LWORK >= M*NB if SIDE = 'R', where NB is the optimal > blocksize. > > If LWORK = -1, then a workspace query is assumed; the routine > only calculates the optimal size of the WORK array, returns > this value as the first entry of the WORK array, and no error > message related to LWORK is issued by XERBLA. > \endverbatim > > \param[out] INFO > \verbatim > INFO is INTEGER > = 0: successful exit > < 0: if INFO = -i, the i-th argument had an illegal value > \endverbatim Authors: ======== > \author Univ. of Tennessee > \author Univ. of California Berkeley > \author Univ. of Colorado Denver > \author NAG Ltd. > \date November 2011 > \ingroup doubleOTHERcomputational ===================================================================== Subroutine */ int igraphdormtr_(char *side, char *uplo, char *trans, integer *m, integer *n, doublereal *a, integer *lda, doublereal *tau, doublereal * c__, integer *ldc, doublereal *work, integer *lwork, integer *info) { /* System generated locals */ address a__1[2]; integer a_dim1, a_offset, c_dim1, c_offset, i__1[2], i__2, i__3; char ch__1[2]; /* Builtin functions Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen); /* Local variables */ integer i1, i2, nb, mi, ni, nq, nw; logical left; extern logical igraphlsame_(char *, char *); integer iinfo; logical upper; extern /* Subroutine */ int igraphxerbla_(char *, integer *, ftnlen); extern integer igraphilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *, ftnlen, ftnlen); extern /* Subroutine */ int igraphdormql_(char *, char *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, integer *), igraphdormqr_(char *, char *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, integer *); integer lwkopt; logical lquery; /* -- LAPACK computational routine (version 3.4.0) -- -- LAPACK is a software package provided by Univ. of Tennessee, -- -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- November 2011 ===================================================================== Test the input arguments Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --tau; c_dim1 = *ldc; c_offset = 1 + c_dim1; c__ -= c_offset; --work; /* Function Body */ *info = 0; left = igraphlsame_(side, "L"); upper = igraphlsame_(uplo, "U"); lquery = *lwork == -1; /* NQ is the order of Q and NW is the minimum dimension of WORK */ if (left) { nq = *m; nw = *n; } else { nq = *n; nw = *m; } if (! left && ! igraphlsame_(side, "R")) { *info = -1; } else if (! upper && ! igraphlsame_(uplo, "L")) { *info = -2; } else if (! igraphlsame_(trans, "N") && ! igraphlsame_(trans, "T")) { *info = -3; } else if (*m < 0) { *info = -4; } else if (*n < 0) { *info = -5; } else if (*lda < max(1,nq)) { *info = -7; } else if (*ldc < max(1,*m)) { *info = -10; } else if (*lwork < max(1,nw) && ! lquery) { *info = -12; } if (*info == 0) { if (upper) { if (left) { /* Writing concatenation */ i__1[0] = 1, a__1[0] = side; i__1[1] = 1, a__1[1] = trans; s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2); i__2 = *m - 1; i__3 = *m - 1; nb = igraphilaenv_(&c__1, "DORMQL", ch__1, &i__2, n, &i__3, &c_n1, ( ftnlen)6, (ftnlen)2); } else { /* Writing concatenation */ i__1[0] = 1, a__1[0] = side; i__1[1] = 1, a__1[1] = trans; s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2); i__2 = *n - 1; i__3 = *n - 1; nb = igraphilaenv_(&c__1, "DORMQL", ch__1, m, &i__2, &i__3, &c_n1, ( ftnlen)6, (ftnlen)2); } } else { if (left) { /* Writing concatenation */ i__1[0] = 1, a__1[0] = side; i__1[1] = 1, a__1[1] = trans; s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2); i__2 = *m - 1; i__3 = *m - 1; nb = igraphilaenv_(&c__1, "DORMQR", ch__1, &i__2, n, &i__3, &c_n1, ( ftnlen)6, (ftnlen)2); } else { /* Writing concatenation */ i__1[0] = 1, a__1[0] = side; i__1[1] = 1, a__1[1] = trans; s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2); i__2 = *n - 1; i__3 = *n - 1; nb = igraphilaenv_(&c__1, "DORMQR", ch__1, m, &i__2, &i__3, &c_n1, ( ftnlen)6, (ftnlen)2); } } lwkopt = max(1,nw) * nb; work[1] = (doublereal) lwkopt; } if (*info != 0) { i__2 = -(*info); igraphxerbla_("DORMTR", &i__2, (ftnlen)6); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*m == 0 || *n == 0 || nq == 1) { work[1] = 1.; return 0; } if (left) { mi = *m - 1; ni = *n; } else { mi = *m; ni = *n - 1; } if (upper) { /* Q was determined by a call to DSYTRD with UPLO = 'U' */ i__2 = nq - 1; igraphdormql_(side, trans, &mi, &ni, &i__2, &a[(a_dim1 << 1) + 1], lda, & tau[1], &c__[c_offset], ldc, &work[1], lwork, &iinfo); } else { /* Q was determined by a call to DSYTRD with UPLO = 'L' */ if (left) { i1 = 2; i2 = 1; } else { i1 = 1; i2 = 2; } i__2 = nq - 1; igraphdormqr_(side, trans, &mi, &ni, &i__2, &a[a_dim1 + 2], lda, &tau[1], & c__[i1 + i2 * c_dim1], ldc, &work[1], lwork, &iinfo); } work[1] = (doublereal) lwkopt; return 0; /* End of DORMTR */ } /* igraphdormtr_ */