/* -- translated by f2c (version 20191129).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
/* Table of constant values */
static integer c__1 = 1;
static integer c_n1 = -1;
static integer c__2 = 2;
/* > \brief \b DORMTR
=========== DOCUMENTATION ===========
Online html documentation available at
http://www.netlib.org/lapack/explore-html/
> \htmlonly
> Download DORMTR + dependencies
>
> [TGZ]
>
> [ZIP]
>
> [TXT]
> \endhtmlonly
Definition:
===========
SUBROUTINE DORMTR( SIDE, UPLO, TRANS, M, N, A, LDA, TAU, C, LDC,
WORK, LWORK, INFO )
CHARACTER SIDE, TRANS, UPLO
INTEGER INFO, LDA, LDC, LWORK, M, N
DOUBLE PRECISION A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
> \par Purpose:
=============
>
> \verbatim
>
> DORMTR overwrites the general real M-by-N matrix C with
>
> SIDE = 'L' SIDE = 'R'
> TRANS = 'N': Q * C C * Q
> TRANS = 'T': Q**T * C C * Q**T
>
> where Q is a real orthogonal matrix of order nq, with nq = m if
> SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of
> nq-1 elementary reflectors, as returned by DSYTRD:
>
> if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1);
>
> if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1).
> \endverbatim
Arguments:
==========
> \param[in] SIDE
> \verbatim
> SIDE is CHARACTER*1
> = 'L': apply Q or Q**T from the Left;
> = 'R': apply Q or Q**T from the Right.
> \endverbatim
>
> \param[in] UPLO
> \verbatim
> UPLO is CHARACTER*1
> = 'U': Upper triangle of A contains elementary reflectors
> from DSYTRD;
> = 'L': Lower triangle of A contains elementary reflectors
> from DSYTRD.
> \endverbatim
>
> \param[in] TRANS
> \verbatim
> TRANS is CHARACTER*1
> = 'N': No transpose, apply Q;
> = 'T': Transpose, apply Q**T.
> \endverbatim
>
> \param[in] M
> \verbatim
> M is INTEGER
> The number of rows of the matrix C. M >= 0.
> \endverbatim
>
> \param[in] N
> \verbatim
> N is INTEGER
> The number of columns of the matrix C. N >= 0.
> \endverbatim
>
> \param[in] A
> \verbatim
> A is DOUBLE PRECISION array, dimension
> (LDA,M) if SIDE = 'L'
> (LDA,N) if SIDE = 'R'
> The vectors which define the elementary reflectors, as
> returned by DSYTRD.
> \endverbatim
>
> \param[in] LDA
> \verbatim
> LDA is INTEGER
> The leading dimension of the array A.
> LDA >= max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE = 'R'.
> \endverbatim
>
> \param[in] TAU
> \verbatim
> TAU is DOUBLE PRECISION array, dimension
> (M-1) if SIDE = 'L'
> (N-1) if SIDE = 'R'
> TAU(i) must contain the scalar factor of the elementary
> reflector H(i), as returned by DSYTRD.
> \endverbatim
>
> \param[in,out] C
> \verbatim
> C is DOUBLE PRECISION array, dimension (LDC,N)
> On entry, the M-by-N matrix C.
> On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
> \endverbatim
>
> \param[in] LDC
> \verbatim
> LDC is INTEGER
> The leading dimension of the array C. LDC >= max(1,M).
> \endverbatim
>
> \param[out] WORK
> \verbatim
> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
> \endverbatim
>
> \param[in] LWORK
> \verbatim
> LWORK is INTEGER
> The dimension of the array WORK.
> If SIDE = 'L', LWORK >= max(1,N);
> if SIDE = 'R', LWORK >= max(1,M).
> For optimum performance LWORK >= N*NB if SIDE = 'L', and
> LWORK >= M*NB if SIDE = 'R', where NB is the optimal
> blocksize.
>
> If LWORK = -1, then a workspace query is assumed; the routine
> only calculates the optimal size of the WORK array, returns
> this value as the first entry of the WORK array, and no error
> message related to LWORK is issued by XERBLA.
> \endverbatim
>
> \param[out] INFO
> \verbatim
> INFO is INTEGER
> = 0: successful exit
> < 0: if INFO = -i, the i-th argument had an illegal value
> \endverbatim
Authors:
========
> \author Univ. of Tennessee
> \author Univ. of California Berkeley
> \author Univ. of Colorado Denver
> \author NAG Ltd.
> \date November 2011
> \ingroup doubleOTHERcomputational
=====================================================================
Subroutine */ int igraphdormtr_(char *side, char *uplo, char *trans, integer *m,
integer *n, doublereal *a, integer *lda, doublereal *tau, doublereal *
c__, integer *ldc, doublereal *work, integer *lwork, integer *info)
{
/* System generated locals */
address a__1[2];
integer a_dim1, a_offset, c_dim1, c_offset, i__1[2], i__2, i__3;
char ch__1[2];
/* Builtin functions
Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);
/* Local variables */
integer i1, i2, nb, mi, ni, nq, nw;
logical left;
extern logical igraphlsame_(char *, char *);
integer iinfo;
logical upper;
extern /* Subroutine */ int igraphxerbla_(char *, integer *, ftnlen);
extern integer igraphilaenv_(integer *, char *, char *, integer *, integer *,
integer *, integer *, ftnlen, ftnlen);
extern /* Subroutine */ int igraphdormql_(char *, char *, integer *, integer *,
integer *, doublereal *, integer *, doublereal *, doublereal *,
integer *, doublereal *, integer *, integer *),
igraphdormqr_(char *, char *, integer *, integer *, integer *,
doublereal *, integer *, doublereal *, doublereal *, integer *,
doublereal *, integer *, integer *);
integer lwkopt;
logical lquery;
/* -- LAPACK computational routine (version 3.4.0) --
-- LAPACK is a software package provided by Univ. of Tennessee, --
-- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
November 2011
=====================================================================
Test the input arguments
Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--tau;
c_dim1 = *ldc;
c_offset = 1 + c_dim1;
c__ -= c_offset;
--work;
/* Function Body */
*info = 0;
left = igraphlsame_(side, "L");
upper = igraphlsame_(uplo, "U");
lquery = *lwork == -1;
/* NQ is the order of Q and NW is the minimum dimension of WORK */
if (left) {
nq = *m;
nw = *n;
} else {
nq = *n;
nw = *m;
}
if (! left && ! igraphlsame_(side, "R")) {
*info = -1;
} else if (! upper && ! igraphlsame_(uplo, "L")) {
*info = -2;
} else if (! igraphlsame_(trans, "N") && ! igraphlsame_(trans,
"T")) {
*info = -3;
} else if (*m < 0) {
*info = -4;
} else if (*n < 0) {
*info = -5;
} else if (*lda < max(1,nq)) {
*info = -7;
} else if (*ldc < max(1,*m)) {
*info = -10;
} else if (*lwork < max(1,nw) && ! lquery) {
*info = -12;
}
if (*info == 0) {
if (upper) {
if (left) {
/* Writing concatenation */
i__1[0] = 1, a__1[0] = side;
i__1[1] = 1, a__1[1] = trans;
s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2);
i__2 = *m - 1;
i__3 = *m - 1;
nb = igraphilaenv_(&c__1, "DORMQL", ch__1, &i__2, n, &i__3, &c_n1, (
ftnlen)6, (ftnlen)2);
} else {
/* Writing concatenation */
i__1[0] = 1, a__1[0] = side;
i__1[1] = 1, a__1[1] = trans;
s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2);
i__2 = *n - 1;
i__3 = *n - 1;
nb = igraphilaenv_(&c__1, "DORMQL", ch__1, m, &i__2, &i__3, &c_n1, (
ftnlen)6, (ftnlen)2);
}
} else {
if (left) {
/* Writing concatenation */
i__1[0] = 1, a__1[0] = side;
i__1[1] = 1, a__1[1] = trans;
s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2);
i__2 = *m - 1;
i__3 = *m - 1;
nb = igraphilaenv_(&c__1, "DORMQR", ch__1, &i__2, n, &i__3, &c_n1, (
ftnlen)6, (ftnlen)2);
} else {
/* Writing concatenation */
i__1[0] = 1, a__1[0] = side;
i__1[1] = 1, a__1[1] = trans;
s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2);
i__2 = *n - 1;
i__3 = *n - 1;
nb = igraphilaenv_(&c__1, "DORMQR", ch__1, m, &i__2, &i__3, &c_n1, (
ftnlen)6, (ftnlen)2);
}
}
lwkopt = max(1,nw) * nb;
work[1] = (doublereal) lwkopt;
}
if (*info != 0) {
i__2 = -(*info);
igraphxerbla_("DORMTR", &i__2, (ftnlen)6);
return 0;
} else if (lquery) {
return 0;
}
/* Quick return if possible */
if (*m == 0 || *n == 0 || nq == 1) {
work[1] = 1.;
return 0;
}
if (left) {
mi = *m - 1;
ni = *n;
} else {
mi = *m;
ni = *n - 1;
}
if (upper) {
/* Q was determined by a call to DSYTRD with UPLO = 'U' */
i__2 = nq - 1;
igraphdormql_(side, trans, &mi, &ni, &i__2, &a[(a_dim1 << 1) + 1], lda, &
tau[1], &c__[c_offset], ldc, &work[1], lwork, &iinfo);
} else {
/* Q was determined by a call to DSYTRD with UPLO = 'L' */
if (left) {
i1 = 2;
i2 = 1;
} else {
i1 = 1;
i2 = 2;
}
i__2 = nq - 1;
igraphdormqr_(side, trans, &mi, &ni, &i__2, &a[a_dim1 + 2], lda, &tau[1], &
c__[i1 + i2 * c_dim1], ldc, &work[1], lwork, &iinfo);
}
work[1] = (doublereal) lwkopt;
return 0;
/* End of DORMTR */
} /* igraphdormtr_ */