/* -- translated by f2c (version 20191129). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Table of constant values */ static integer c__1 = 1; static integer c_n1 = -1; static doublereal c_b13 = -1.; static doublereal c_b14 = 1.; /* > \brief \b DPOTRF =========== DOCUMENTATION =========== Online html documentation available at http://www.netlib.org/lapack/explore-html/ > \htmlonly > Download DPOTRF + dependencies > > [TGZ] > > [ZIP] > > [TXT] > \endhtmlonly Definition: =========== SUBROUTINE DPOTRF( UPLO, N, A, LDA, INFO ) CHARACTER UPLO INTEGER INFO, LDA, N DOUBLE PRECISION A( LDA, * ) > \par Purpose: ============= > > \verbatim > > DPOTRF computes the Cholesky factorization of a real symmetric > positive definite matrix A. > > The factorization has the form > A = U**T * U, if UPLO = 'U', or > A = L * L**T, if UPLO = 'L', > where U is an upper triangular matrix and L is lower triangular. > > This is the block version of the algorithm, calling Level 3 BLAS. > \endverbatim Arguments: ========== > \param[in] UPLO > \verbatim > UPLO is CHARACTER*1 > = 'U': Upper triangle of A is stored; > = 'L': Lower triangle of A is stored. > \endverbatim > > \param[in] N > \verbatim > N is INTEGER > The order of the matrix A. N >= 0. > \endverbatim > > \param[in,out] A > \verbatim > A is DOUBLE PRECISION array, dimension (LDA,N) > On entry, the symmetric matrix A. If UPLO = 'U', the leading > N-by-N upper triangular part of A contains the upper > triangular part of the matrix A, and the strictly lower > triangular part of A is not referenced. If UPLO = 'L', the > leading N-by-N lower triangular part of A contains the lower > triangular part of the matrix A, and the strictly upper > triangular part of A is not referenced. > > On exit, if INFO = 0, the factor U or L from the Cholesky > factorization A = U**T*U or A = L*L**T. > \endverbatim > > \param[in] LDA > \verbatim > LDA is INTEGER > The leading dimension of the array A. LDA >= max(1,N). > \endverbatim > > \param[out] INFO > \verbatim > INFO is INTEGER > = 0: successful exit > < 0: if INFO = -i, the i-th argument had an illegal value > > 0: if INFO = i, the leading minor of order i is not > positive definite, and the factorization could not be > completed. > \endverbatim Authors: ======== > \author Univ. of Tennessee > \author Univ. of California Berkeley > \author Univ. of Colorado Denver > \author NAG Ltd. > \date November 2011 > \ingroup doublePOcomputational ===================================================================== Subroutine */ int igraphdpotrf_(char *uplo, integer *n, doublereal *a, integer * lda, integer *info) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3, i__4; /* Local variables */ integer j, jb, nb; extern /* Subroutine */ int igraphdgemm_(char *, char *, integer *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *); extern logical igraphlsame_(char *, char *); extern /* Subroutine */ int igraphdtrsm_(char *, char *, char *, char *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *); logical upper; extern /* Subroutine */ int igraphdsyrk_(char *, char *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, doublereal *, integer *), igraphdpotf2_(char *, integer *, doublereal *, integer *, integer *), igraphxerbla_(char *, integer *, ftnlen); extern integer igraphilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *, ftnlen, ftnlen); /* -- LAPACK computational routine (version 3.4.0) -- -- LAPACK is a software package provided by Univ. of Tennessee, -- -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- November 2011 ===================================================================== Test the input parameters. Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; /* Function Body */ *info = 0; upper = igraphlsame_(uplo, "U"); if (! upper && ! igraphlsame_(uplo, "L")) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*lda < max(1,*n)) { *info = -4; } if (*info != 0) { i__1 = -(*info); igraphxerbla_("DPOTRF", &i__1, (ftnlen)6); return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } /* Determine the block size for this environment. */ nb = igraphilaenv_(&c__1, "DPOTRF", uplo, n, &c_n1, &c_n1, &c_n1, (ftnlen)6, ( ftnlen)1); if (nb <= 1 || nb >= *n) { /* Use unblocked code. */ igraphdpotf2_(uplo, n, &a[a_offset], lda, info); } else { /* Use blocked code. */ if (upper) { /* Compute the Cholesky factorization A = U**T*U. */ i__1 = *n; i__2 = nb; for (j = 1; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) { /* Update and factorize the current diagonal block and test for non-positive-definiteness. Computing MIN */ i__3 = nb, i__4 = *n - j + 1; jb = min(i__3,i__4); i__3 = j - 1; igraphdsyrk_("Upper", "Transpose", &jb, &i__3, &c_b13, &a[j * a_dim1 + 1], lda, &c_b14, &a[j + j * a_dim1], lda); igraphdpotf2_("Upper", &jb, &a[j + j * a_dim1], lda, info); if (*info != 0) { goto L30; } if (j + jb <= *n) { /* Compute the current block row. */ i__3 = *n - j - jb + 1; i__4 = j - 1; igraphdgemm_("Transpose", "No transpose", &jb, &i__3, &i__4, & c_b13, &a[j * a_dim1 + 1], lda, &a[(j + jb) * a_dim1 + 1], lda, &c_b14, &a[j + (j + jb) * a_dim1], lda); i__3 = *n - j - jb + 1; igraphdtrsm_("Left", "Upper", "Transpose", "Non-unit", &jb, & i__3, &c_b14, &a[j + j * a_dim1], lda, &a[j + (j + jb) * a_dim1], lda); } /* L10: */ } } else { /* Compute the Cholesky factorization A = L*L**T. */ i__2 = *n; i__1 = nb; for (j = 1; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) { /* Update and factorize the current diagonal block and test for non-positive-definiteness. Computing MIN */ i__3 = nb, i__4 = *n - j + 1; jb = min(i__3,i__4); i__3 = j - 1; igraphdsyrk_("Lower", "No transpose", &jb, &i__3, &c_b13, &a[j + a_dim1], lda, &c_b14, &a[j + j * a_dim1], lda); igraphdpotf2_("Lower", &jb, &a[j + j * a_dim1], lda, info); if (*info != 0) { goto L30; } if (j + jb <= *n) { /* Compute the current block column. */ i__3 = *n - j - jb + 1; i__4 = j - 1; igraphdgemm_("No transpose", "Transpose", &i__3, &jb, &i__4, & c_b13, &a[j + jb + a_dim1], lda, &a[j + a_dim1], lda, &c_b14, &a[j + jb + j * a_dim1], lda); i__3 = *n - j - jb + 1; igraphdtrsm_("Right", "Lower", "Transpose", "Non-unit", &i__3, & jb, &c_b14, &a[j + j * a_dim1], lda, &a[j + jb + j * a_dim1], lda); } /* L20: */ } } } goto L40; L30: *info = *info + j - 1; L40: return 0; /* End of DPOTRF */ } /* igraphdpotrf_ */