/* -- translated by f2c (version 20191129). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Table of constant values */ static doublereal c_b4 = 0.; static doublereal c_b5 = 1.; static integer c__1 = 1; static doublereal c_b20 = -1.; /* ----------------------------------------------------------------------- \BeginDoc \Name: dsapps \Description: Given the Arnoldi factorization A*V_{k} - V_{k}*H_{k} = r_{k+p}*e_{k+p}^T, apply NP shifts implicitly resulting in A*(V_{k}*Q) - (V_{k}*Q)*(Q^T* H_{k}*Q) = r_{k+p}*e_{k+p}^T * Q where Q is an orthogonal matrix of order KEV+NP. Q is the product of rotations resulting from the NP bulge chasing sweeps. The updated Arnoldi factorization becomes: A*VNEW_{k} - VNEW_{k}*HNEW_{k} = rnew_{k}*e_{k}^T. \Usage: call dsapps ( N, KEV, NP, SHIFT, V, LDV, H, LDH, RESID, Q, LDQ, WORKD ) \Arguments N Integer. (INPUT) Problem size, i.e. dimension of matrix A. KEV Integer. (INPUT) INPUT: KEV+NP is the size of the input matrix H. OUTPUT: KEV is the size of the updated matrix HNEW. NP Integer. (INPUT) Number of implicit shifts to be applied. SHIFT Double precision array of length NP. (INPUT) The shifts to be applied. V Double precision N by (KEV+NP) array. (INPUT/OUTPUT) INPUT: V contains the current KEV+NP Arnoldi vectors. OUTPUT: VNEW = V(1:n,1:KEV); the updated Arnoldi vectors are in the first KEV columns of V. LDV Integer. (INPUT) Leading dimension of V exactly as declared in the calling program. H Double precision (KEV+NP) by 2 array. (INPUT/OUTPUT) INPUT: H contains the symmetric tridiagonal matrix of the Arnoldi factorization with the subdiagonal in the 1st column starting at H(2,1) and the main diagonal in the 2nd column. OUTPUT: H contains the updated tridiagonal matrix in the KEV leading submatrix. LDH Integer. (INPUT) Leading dimension of H exactly as declared in the calling program. RESID Double precision array of length (N). (INPUT/OUTPUT) INPUT: RESID contains the the residual vector r_{k+p}. OUTPUT: RESID is the updated residual vector rnew_{k}. Q Double precision KEV+NP by KEV+NP work array. (WORKSPACE) Work array used to accumulate the rotations during the bulge chase sweep. LDQ Integer. (INPUT) Leading dimension of Q exactly as declared in the calling program. WORKD Double precision work array of length 2*N. (WORKSPACE) Distributed array used in the application of the accumulated orthogonal matrix Q. \EndDoc ----------------------------------------------------------------------- \BeginLib \Local variables: xxxxxx real \References: 1. D.C. Sorensen, "Implicit Application of Polynomial Filters in a k-Step Arnoldi Method", SIAM J. Matr. Anal. Apps., 13 (1992), pp 357-385. 2. R.B. Lehoucq, "Analysis and Implementation of an Implicitly Restarted Arnoldi Iteration", Rice University Technical Report TR95-13, Department of Computational and Applied Mathematics. \Routines called: ivout ARPACK utility routine that prints integers. second ARPACK utility routine for timing. dvout ARPACK utility routine that prints vectors. dlamch LAPACK routine that determines machine constants. dlartg LAPACK Givens rotation construction routine. dlacpy LAPACK matrix copy routine. dlaset LAPACK matrix initialization routine. dgemv Level 2 BLAS routine for matrix vector multiplication. daxpy Level 1 BLAS that computes a vector triad. dcopy Level 1 BLAS that copies one vector to another. dscal Level 1 BLAS that scales a vector. \Author Danny Sorensen Phuong Vu Richard Lehoucq CRPC / Rice University Dept. of Computational & Houston, Texas Applied Mathematics Rice University Houston, Texas \Revision history: 12/16/93: Version ' 2.1' \SCCS Information: @(#) FILE: sapps.F SID: 2.5 DATE OF SID: 4/19/96 RELEASE: 2 \Remarks 1. In this version, each shift is applied to all the subblocks of the tridiagonal matrix H and not just to the submatrix that it comes from. This routine assumes that the subdiagonal elements of H that are stored in h(1:kev+np,1) are nonegative upon input and enforce this condition upon output. This version incorporates deflation. See code for documentation. \EndLib ----------------------------------------------------------------------- Subroutine */ int igraphdsapps_(integer *n, integer *kev, integer *np, doublereal *shift, doublereal *v, integer *ldv, doublereal *h__, integer *ldh, doublereal *resid, doublereal *q, integer *ldq, doublereal *workd) { /* Initialized data */ IGRAPH_F77_SAVE logical first = TRUE_; /* System generated locals */ integer h_dim1, h_offset, q_dim1, q_offset, v_dim1, v_offset, i__1, i__2, i__3, i__4; doublereal d__1, d__2; /* Local variables */ doublereal c__, f, g; integer i__, j; doublereal r__, s, a1, a2, a3, a4; IGRAPH_F77_SAVE real t0, t1; integer jj; doublereal big; integer iend, itop; extern /* Subroutine */ int igraphdscal_(integer *, doublereal *, doublereal *, integer *), igraphdgemv_(char *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *), igraphdcopy_(integer *, doublereal *, integer *, doublereal *, integer *), igraphdaxpy_(integer *, doublereal *, doublereal *, integer *, doublereal *, integer *), igraphdvout_( integer *, integer *, doublereal *, integer *, char *, ftnlen), igraphivout_(integer *, integer *, integer *, integer *, char *, ftnlen) ; extern doublereal igraphdlamch_(char *); extern /* Subroutine */ int igraphsecond_(real *), igraphdlacpy_(char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *), igraphdlartg_(doublereal *, doublereal *, doublereal *, doublereal *, doublereal *), igraphdlaset_(char *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *); IGRAPH_F77_SAVE doublereal epsmch; integer logfil, ndigit, msapps = 0, msglvl, istart; real tsapps = 0; integer kplusp; /* %----------------------------------------------------% | Include files for debugging and timing information | %----------------------------------------------------% %------------------% | Scalar Arguments | %------------------% %-----------------% | Array Arguments | %-----------------% %------------% | Parameters | %------------% %---------------% | Local Scalars | %---------------% %----------------------% | External Subroutines | %----------------------% %--------------------% | External Functions | %--------------------% %----------------------% | Intrinsics Functions | %----------------------% %----------------% | Data statments | %----------------% Parameter adjustments */ --workd; --resid; --shift; v_dim1 = *ldv; v_offset = 1 + v_dim1; v -= v_offset; h_dim1 = *ldh; h_offset = 1 + h_dim1; h__ -= h_offset; q_dim1 = *ldq; q_offset = 1 + q_dim1; q -= q_offset; /* Function Body %-----------------------% | Executable Statements | %-----------------------% */ if (first) { epsmch = igraphdlamch_("Epsilon-Machine"); first = FALSE_; } itop = 1; /* %-------------------------------% | Initialize timing statistics | | & message level for debugging | %-------------------------------% */ igraphsecond_(&t0); msglvl = msapps; kplusp = *kev + *np; /* %----------------------------------------------% | Initialize Q to the identity matrix of order | | kplusp used to accumulate the rotations. | %----------------------------------------------% */ igraphdlaset_("All", &kplusp, &kplusp, &c_b4, &c_b5, &q[q_offset], ldq); /* %----------------------------------------------% | Quick return if there are no shifts to apply | %----------------------------------------------% */ if (*np == 0) { goto L9000; } /* %----------------------------------------------------------% | Apply the np shifts implicitly. Apply each shift to the | | whole matrix and not just to the submatrix from which it | | comes. | %----------------------------------------------------------% */ i__1 = *np; for (jj = 1; jj <= i__1; ++jj) { istart = itop; /* %----------------------------------------------------------% | Check for splitting and deflation. Currently we consider | | an off-diagonal element h(i+1,1) negligible if | | h(i+1,1) .le. epsmch*( |h(i,2)| + |h(i+1,2)| ) | | for i=1:KEV+NP-1. | | If above condition tests true then we set h(i+1,1) = 0. | | Note that h(1:KEV+NP,1) are assumed to be non negative. | %----------------------------------------------------------% */ L20: /* %------------------------------------------------% | The following loop exits early if we encounter | | a negligible off diagonal element. | %------------------------------------------------% */ i__2 = kplusp - 1; for (i__ = istart; i__ <= i__2; ++i__) { big = (d__1 = h__[i__ + (h_dim1 << 1)], abs(d__1)) + (d__2 = h__[ i__ + 1 + (h_dim1 << 1)], abs(d__2)); if (h__[i__ + 1 + h_dim1] <= epsmch * big) { if (msglvl > 0) { igraphivout_(&logfil, &c__1, &i__, &ndigit, "_sapps: deflation" " at row/column no.", (ftnlen)35); igraphivout_(&logfil, &c__1, &jj, &ndigit, "_sapps: occured be" "fore shift number.", (ftnlen)36); igraphdvout_(&logfil, &c__1, &h__[i__ + 1 + h_dim1], &ndigit, "_sapps: the corresponding off diagonal element", (ftnlen)46); } h__[i__ + 1 + h_dim1] = 0.; iend = i__; goto L40; } /* L30: */ } iend = kplusp; L40: if (istart < iend) { /* %--------------------------------------------------------% | Construct the plane rotation G'(istart,istart+1,theta) | | that attempts to drive h(istart+1,1) to zero. | %--------------------------------------------------------% */ f = h__[istart + (h_dim1 << 1)] - shift[jj]; g = h__[istart + 1 + h_dim1]; igraphdlartg_(&f, &g, &c__, &s, &r__); /* %-------------------------------------------------------% | Apply rotation to the left and right of H; | | H <- G' * H * G, where G = G(istart,istart+1,theta). | | This will create a "bulge". | %-------------------------------------------------------% */ a1 = c__ * h__[istart + (h_dim1 << 1)] + s * h__[istart + 1 + h_dim1]; a2 = c__ * h__[istart + 1 + h_dim1] + s * h__[istart + 1 + ( h_dim1 << 1)]; a4 = c__ * h__[istart + 1 + (h_dim1 << 1)] - s * h__[istart + 1 + h_dim1]; a3 = c__ * h__[istart + 1 + h_dim1] - s * h__[istart + (h_dim1 << 1)]; h__[istart + (h_dim1 << 1)] = c__ * a1 + s * a2; h__[istart + 1 + (h_dim1 << 1)] = c__ * a4 - s * a3; h__[istart + 1 + h_dim1] = c__ * a3 + s * a4; /* %----------------------------------------------------% | Accumulate the rotation in the matrix Q; Q <- Q*G | %----------------------------------------------------% Computing MIN */ i__3 = istart + jj; i__2 = min(i__3,kplusp); for (j = 1; j <= i__2; ++j) { a1 = c__ * q[j + istart * q_dim1] + s * q[j + (istart + 1) * q_dim1]; q[j + (istart + 1) * q_dim1] = -s * q[j + istart * q_dim1] + c__ * q[j + (istart + 1) * q_dim1]; q[j + istart * q_dim1] = a1; /* L60: */ } /* %----------------------------------------------% | The following loop chases the bulge created. | | Note that the previous rotation may also be | | done within the following loop. But it is | | kept separate to make the distinction among | | the bulge chasing sweeps and the first plane | | rotation designed to drive h(istart+1,1) to | | zero. | %----------------------------------------------% */ i__2 = iend - 1; for (i__ = istart + 1; i__ <= i__2; ++i__) { /* %----------------------------------------------% | Construct the plane rotation G'(i,i+1,theta) | | that zeros the i-th bulge that was created | | by G(i-1,i,theta). g represents the bulge. | %----------------------------------------------% */ f = h__[i__ + h_dim1]; g = s * h__[i__ + 1 + h_dim1]; /* %----------------------------------% | Final update with G(i-1,i,theta) | %----------------------------------% */ h__[i__ + 1 + h_dim1] = c__ * h__[i__ + 1 + h_dim1]; igraphdlartg_(&f, &g, &c__, &s, &r__); /* %-------------------------------------------% | The following ensures that h(1:iend-1,1), | | the first iend-2 off diagonal of elements | | H, remain non negative. | %-------------------------------------------% */ if (r__ < 0.) { r__ = -r__; c__ = -c__; s = -s; } /* %--------------------------------------------% | Apply rotation to the left and right of H; | | H <- G * H * G', where G = G(i,i+1,theta) | %--------------------------------------------% */ h__[i__ + h_dim1] = r__; a1 = c__ * h__[i__ + (h_dim1 << 1)] + s * h__[i__ + 1 + h_dim1]; a2 = c__ * h__[i__ + 1 + h_dim1] + s * h__[i__ + 1 + (h_dim1 << 1)]; a3 = c__ * h__[i__ + 1 + h_dim1] - s * h__[i__ + (h_dim1 << 1) ]; a4 = c__ * h__[i__ + 1 + (h_dim1 << 1)] - s * h__[i__ + 1 + h_dim1]; h__[i__ + (h_dim1 << 1)] = c__ * a1 + s * a2; h__[i__ + 1 + (h_dim1 << 1)] = c__ * a4 - s * a3; h__[i__ + 1 + h_dim1] = c__ * a3 + s * a4; /* %----------------------------------------------------% | Accumulate the rotation in the matrix Q; Q <- Q*G | %----------------------------------------------------% Computing MIN */ i__4 = j + jj; i__3 = min(i__4,kplusp); for (j = 1; j <= i__3; ++j) { a1 = c__ * q[j + i__ * q_dim1] + s * q[j + (i__ + 1) * q_dim1]; q[j + (i__ + 1) * q_dim1] = -s * q[j + i__ * q_dim1] + c__ * q[j + (i__ + 1) * q_dim1]; q[j + i__ * q_dim1] = a1; /* L50: */ } /* L70: */ } } /* %--------------------------% | Update the block pointer | %--------------------------% */ istart = iend + 1; /* %------------------------------------------% | Make sure that h(iend,1) is non-negative | | If not then set h(iend,1) <-- -h(iend,1) | | and negate the last column of Q. | | We have effectively carried out a | | similarity on transformation H | %------------------------------------------% */ if (h__[iend + h_dim1] < 0.) { h__[iend + h_dim1] = -h__[iend + h_dim1]; igraphdscal_(&kplusp, &c_b20, &q[iend * q_dim1 + 1], &c__1); } /* %--------------------------------------------------------% | Apply the same shift to the next block if there is any | %--------------------------------------------------------% */ if (iend < kplusp) { goto L20; } /* %-----------------------------------------------------% | Check if we can increase the the start of the block | %-----------------------------------------------------% */ i__2 = kplusp - 1; for (i__ = itop; i__ <= i__2; ++i__) { if (h__[i__ + 1 + h_dim1] > 0.) { goto L90; } ++itop; /* L80: */ } /* %-----------------------------------% | Finished applying the jj-th shift | %-----------------------------------% */ L90: ; } /* %------------------------------------------% | All shifts have been applied. Check for | | more possible deflation that might occur | | after the last shift is applied. | %------------------------------------------% */ i__1 = kplusp - 1; for (i__ = itop; i__ <= i__1; ++i__) { big = (d__1 = h__[i__ + (h_dim1 << 1)], abs(d__1)) + (d__2 = h__[i__ + 1 + (h_dim1 << 1)], abs(d__2)); if (h__[i__ + 1 + h_dim1] <= epsmch * big) { if (msglvl > 0) { igraphivout_(&logfil, &c__1, &i__, &ndigit, "_sapps: deflation at " "row/column no.", (ftnlen)35); igraphdvout_(&logfil, &c__1, &h__[i__ + 1 + h_dim1], &ndigit, "_sa" "pps: the corresponding off diagonal element", (ftnlen) 46); } h__[i__ + 1 + h_dim1] = 0.; } /* L100: */ } /* %-------------------------------------------------% | Compute the (kev+1)-st column of (V*Q) and | | temporarily store the result in WORKD(N+1:2*N). | | This is not necessary if h(kev+1,1) = 0. | %-------------------------------------------------% */ if (h__[*kev + 1 + h_dim1] > 0.) { igraphdgemv_("N", n, &kplusp, &c_b5, &v[v_offset], ldv, &q[(*kev + 1) * q_dim1 + 1], &c__1, &c_b4, &workd[*n + 1], &c__1); } /* %-------------------------------------------------------% | Compute column 1 to kev of (V*Q) in backward order | | taking advantage that Q is an upper triangular matrix | | with lower bandwidth np. | | Place results in v(:,kplusp-kev:kplusp) temporarily. | %-------------------------------------------------------% */ i__1 = *kev; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = kplusp - i__ + 1; igraphdgemv_("N", n, &i__2, &c_b5, &v[v_offset], ldv, &q[(*kev - i__ + 1) * q_dim1 + 1], &c__1, &c_b4, &workd[1], &c__1); igraphdcopy_(n, &workd[1], &c__1, &v[(kplusp - i__ + 1) * v_dim1 + 1], & c__1); /* L130: */ } /* %-------------------------------------------------% | Move v(:,kplusp-kev+1:kplusp) into v(:,1:kev). | %-------------------------------------------------% */ igraphdlacpy_("All", n, kev, &v[(*np + 1) * v_dim1 + 1], ldv, &v[v_offset], ldv); /* %--------------------------------------------% | Copy the (kev+1)-st column of (V*Q) in the | | appropriate place if h(kev+1,1) .ne. zero. | %--------------------------------------------% */ if (h__[*kev + 1 + h_dim1] > 0.) { igraphdcopy_(n, &workd[*n + 1], &c__1, &v[(*kev + 1) * v_dim1 + 1], &c__1); } /* %-------------------------------------% | Update the residual vector: | | r <- sigmak*r + betak*v(:,kev+1) | | where | | sigmak = (e_{kev+p}'*Q)*e_{kev} | | betak = e_{kev+1}'*H*e_{kev} | %-------------------------------------% */ igraphdscal_(n, &q[kplusp + *kev * q_dim1], &resid[1], &c__1); if (h__[*kev + 1 + h_dim1] > 0.) { igraphdaxpy_(n, &h__[*kev + 1 + h_dim1], &v[(*kev + 1) * v_dim1 + 1], &c__1, &resid[1], &c__1); } if (msglvl > 1) { igraphdvout_(&logfil, &c__1, &q[kplusp + *kev * q_dim1], &ndigit, "_sapps:" " sigmak of the updated residual vector", (ftnlen)45); igraphdvout_(&logfil, &c__1, &h__[*kev + 1 + h_dim1], &ndigit, "_sapps: be" "tak of the updated residual vector", (ftnlen)44); igraphdvout_(&logfil, kev, &h__[(h_dim1 << 1) + 1], &ndigit, "_sapps: upda" "ted main diagonal of H for next iteration", (ftnlen)53); if (*kev > 1) { i__1 = *kev - 1; igraphdvout_(&logfil, &i__1, &h__[h_dim1 + 2], &ndigit, "_sapps: updat" "ed sub diagonal of H for next iteration", (ftnlen)52); } } igraphsecond_(&t1); tsapps += t1 - t0; L9000: return 0; /* %---------------% | End of dsapps | %---------------% */ } /* igraphdsapps_ */