/* -- translated by f2c (version 20191129). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Table of constant values */ static doublereal c_b21 = .66666666666666663; static integer c__1 = 1; static integer c__2 = 2; static logical c_true = TRUE_; static doublereal c_b119 = 1.; /* \BeginDoc \Name: dseupd \Description: This subroutine returns the converged approximations to eigenvalues of A*z = lambda*B*z and (optionally): (1) the corresponding approximate eigenvectors, (2) an orthonormal (Lanczos) basis for the associated approximate invariant subspace, (3) Both. There is negligible additional cost to obtain eigenvectors. An orthonormal (Lanczos) basis is always computed. There is an additional storage cost of n*nev if both are requested (in this case a separate array Z must be supplied). These quantities are obtained from the Lanczos factorization computed by DSAUPD for the linear operator OP prescribed by the MODE selection (see IPARAM(7) in DSAUPD documentation.) DSAUPD must be called before this routine is called. These approximate eigenvalues and vectors are commonly called Ritz values and Ritz vectors respectively. They are referred to as such in the comments that follow. The computed orthonormal basis for the invariant subspace corresponding to these Ritz values is referred to as a Lanczos basis. See documentation in the header of the subroutine DSAUPD for a definition of OP as well as other terms and the relation of computed Ritz values and vectors of OP with respect to the given problem A*z = lambda*B*z. The approximate eigenvalues of the original problem are returned in ascending algebraic order. The user may elect to call this routine once for each desired Ritz vector and store it peripherally if desired. There is also the option of computing a selected set of these vectors with a single call. \Usage: call dseupd ( RVEC, HOWMNY, SELECT, D, Z, LDZ, SIGMA, BMAT, N, WHICH, NEV, TOL, RESID, NCV, V, LDV, IPARAM, IPNTR, WORKD, WORKL, LWORKL, INFO ) RVEC LOGICAL (INPUT) Specifies whether Ritz vectors corresponding to the Ritz value approximations to the eigenproblem A*z = lambda*B*z are computed. RVEC = .FALSE. Compute Ritz values only. RVEC = .TRUE. Compute Ritz vectors. HOWMNY Character*1 (INPUT) Specifies how many Ritz vectors are wanted and the form of Z the matrix of Ritz vectors. See remark 1 below. = 'A': compute NEV Ritz vectors; = 'S': compute some of the Ritz vectors, specified by the logical array SELECT. SELECT Logical array of dimension NEV. (INPUT) If HOWMNY = 'S', SELECT specifies the Ritz vectors to be computed. To select the Ritz vector corresponding to a Ritz value D(j), SELECT(j) must be set to .TRUE.. If HOWMNY = 'A' , SELECT is not referenced. D Double precision array of dimension NEV. (OUTPUT) On exit, D contains the Ritz value approximations to the eigenvalues of A*z = lambda*B*z. The values are returned in ascending order. If IPARAM(7) = 3,4,5 then D represents the Ritz values of OP computed by dsaupd transformed to those of the original eigensystem A*z = lambda*B*z. If IPARAM(7) = 1,2 then the Ritz values of OP are the same as the those of A*z = lambda*B*z. Z Double precision N by NEV array if HOWMNY = 'A'. (OUTPUT) On exit, Z contains the B-orthonormal Ritz vectors of the eigensystem A*z = lambda*B*z corresponding to the Ritz value approximations. If RVEC = .FALSE. then Z is not referenced. NOTE: The array Z may be set equal to first NEV columns of the Arnoldi/Lanczos basis array V computed by DSAUPD. LDZ Integer. (INPUT) The leading dimension of the array Z. If Ritz vectors are desired, then LDZ .ge. max( 1, N ). In any case, LDZ .ge. 1. SIGMA Double precision (INPUT) If IPARAM(7) = 3,4,5 represents the shift. Not referenced if IPARAM(7) = 1 or 2. **** The remaining arguments MUST be the same as for the **** **** call to DNAUPD that was just completed. **** NOTE: The remaining arguments BMAT, N, WHICH, NEV, TOL, RESID, NCV, V, LDV, IPARAM, IPNTR, WORKD, WORKL, LWORKL, INFO must be passed directly to DSEUPD following the last call to DSAUPD. These arguments MUST NOT BE MODIFIED between the the last call to DSAUPD and the call to DSEUPD. Two of these parameters (WORKL, INFO) are also output parameters: WORKL Double precision work array of length LWORKL. (OUTPUT/WORKSPACE) WORKL(1:4*ncv) contains information obtained in dsaupd. They are not changed by dseupd. WORKL(4*ncv+1:ncv*ncv+8*ncv) holds the untransformed Ritz values, the computed error estimates, and the associated eigenvector matrix of H. Note: IPNTR(8:10) contains the pointer into WORKL for addresses of the above information computed by dseupd. ------------------------------------------------------------- IPNTR(8): pointer to the NCV RITZ values of the original system. IPNTR(9): pointer to the NCV corresponding error bounds. IPNTR(10): pointer to the NCV by NCV matrix of eigenvectors of the tridiagonal matrix T. Only referenced by dseupd if RVEC = .TRUE. See Remarks. ------------------------------------------------------------- INFO Integer. (OUTPUT) Error flag on output. = 0: Normal exit. = -1: N must be positive. = -2: NEV must be positive. = -3: NCV must be greater than NEV and less than or equal to N. = -5: WHICH must be one of 'LM', 'SM', 'LA', 'SA' or 'BE'. = -6: BMAT must be one of 'I' or 'G'. = -7: Length of private work WORKL array is not sufficient. = -8: Error return from trid. eigenvalue calculation; Information error from LAPACK routine dsteqr. = -9: Starting vector is zero. = -10: IPARAM(7) must be 1,2,3,4,5. = -11: IPARAM(7) = 1 and BMAT = 'G' are incompatible. = -12: NEV and WHICH = 'BE' are incompatible. = -14: DSAUPD did not find any eigenvalues to sufficient accuracy. = -15: HOWMNY must be one of 'A' or 'S' if RVEC = .true. = -16: HOWMNY = 'S' not yet implemented \BeginLib \References: 1. D.C. Sorensen, "Implicit Application of Polynomial Filters in a k-Step Arnoldi Method", SIAM J. Matr. Anal. Apps., 13 (1992), pp 357-385. 2. R.B. Lehoucq, "Analysis and Implementation of an Implicitly Restarted Arnoldi Iteration", Rice University Technical Report TR95-13, Department of Computational and Applied Mathematics. 3. B.N. Parlett, "The Symmetric Eigenvalue Problem". Prentice-Hall, 1980. 4. B.N. Parlett, B. Nour-Omid, "Towards a Black Box Lanczos Program", Computer Physics Communications, 53 (1989), pp 169-179. 5. B. Nour-Omid, B.N. Parlett, T. Ericson, P.S. Jensen, "How to Implement the Spectral Transformation", Math. Comp., 48 (1987), pp 663-673. 6. R.G. Grimes, J.G. Lewis and H.D. Simon, "A Shifted Block Lanczos Algorithm for Solving Sparse Symmetric Generalized Eigenproblems", SIAM J. Matr. Anal. Apps., January (1993). 7. L. Reichel, W.B. Gragg, "Algorithm 686: FORTRAN Subroutines for Updating the QR decomposition", ACM TOMS, December 1990, Volume 16 Number 4, pp 369-377. \Remarks 1. The converged Ritz values are always returned in increasing (algebraic) order. 2. Currently only HOWMNY = 'A' is implemented. It is included at this stage for the user who wants to incorporate it. \Routines called: dsesrt ARPACK routine that sorts an array X, and applies the corresponding permutation to a matrix A. dsortr dsortr ARPACK sorting routine. ivout ARPACK utility routine that prints integers. dvout ARPACK utility routine that prints vectors. dgeqr2 LAPACK routine that computes the QR factorization of a matrix. dlacpy LAPACK matrix copy routine. dlamch LAPACK routine that determines machine constants. dorm2r LAPACK routine that applies an orthogonal matrix in factored form. dsteqr LAPACK routine that computes eigenvalues and eigenvectors of a tridiagonal matrix. dger Level 2 BLAS rank one update to a matrix. dcopy Level 1 BLAS that copies one vector to another . dnrm2 Level 1 BLAS that computes the norm of a vector. dscal Level 1 BLAS that scales a vector. dswap Level 1 BLAS that swaps the contents of two vectors. \Authors Danny Sorensen Phuong Vu Richard Lehoucq CRPC / Rice University Chao Yang Houston, Texas Dept. of Computational & Applied Mathematics Rice University Houston, Texas \Revision history: 12/15/93: Version ' 2.1' \SCCS Information: @(#) FILE: seupd.F SID: 2.7 DATE OF SID: 8/27/96 RELEASE: 2 \EndLib ----------------------------------------------------------------------- Subroutine */ int igraphdseupd_(logical *rvec, char *howmny, logical *select, doublereal *d__, doublereal *z__, integer *ldz, doublereal *sigma, char *bmat, integer *n, char *which, integer *nev, doublereal *tol, doublereal *resid, integer *ncv, doublereal *v, integer *ldv, integer *iparam, integer *ipntr, doublereal *workd, doublereal *workl, integer *lworkl, integer *info) { /* System generated locals */ integer v_dim1, v_offset, z_dim1, z_offset, i__1; doublereal d__1, d__2, d__3; /* Builtin functions */ integer s_cmp(char *, char *, ftnlen, ftnlen); /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); double pow_dd(doublereal *, doublereal *); /* Local variables */ integer j, k, ih, iq, iw; doublereal kv[2]; integer ibd, ihb, ihd, ldh, ilg, ldq, ism, irz; extern /* Subroutine */ int igraphdger_(integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *); integer mode; doublereal eps23; integer ierr; doublereal temp; integer next; char type__[6]; integer ritz; extern doublereal igraphdnrm2_(integer *, doublereal *, integer *); extern /* Subroutine */ int igraphdscal_(integer *, doublereal *, doublereal *, integer *); logical reord; extern /* Subroutine */ int igraphdcopy_(integer *, doublereal *, integer *, doublereal *, integer *); integer nconv; doublereal rnorm; extern /* Subroutine */ int igraphdvout_(integer *, integer *, doublereal *, integer *, char *, ftnlen), igraphivout_(integer *, integer *, integer * , integer *, char *, ftnlen), igraphdgeqr2_(integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *); doublereal bnorm2; extern /* Subroutine */ int igraphdorm2r_(char *, char *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *); doublereal thres1, thres2; extern doublereal igraphdlamch_(char *); extern /* Subroutine */ int igraphdlacpy_(char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *); integer logfil, ndigit, bounds, mseupd = 0; extern /* Subroutine */ int igraphdsteqr_(char *, integer *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, integer *); integer msglvl, ktrord; extern /* Subroutine */ int igraphdsesrt_(char *, logical *, integer *, doublereal *, integer *, doublereal *, integer *), igraphdsortr_(char *, logical *, integer *, doublereal *, doublereal *); doublereal tempbnd; integer leftptr, rghtptr; /* %----------------------------------------------------% | Include files for debugging and timing information | %----------------------------------------------------% %------------------% | Scalar Arguments | %------------------% %-----------------% | Array Arguments | %-----------------% %------------% | Parameters | %------------% %---------------% | Local Scalars | %---------------% %--------------% | Local Arrays | %--------------% %----------------------% | External Subroutines | %----------------------% %--------------------% | External Functions | %--------------------% %---------------------% | Intrinsic Functions | %---------------------% %-----------------------% | Executable Statements | %-----------------------% %------------------------% | Set default parameters | %------------------------% Parameter adjustments */ --workd; --resid; z_dim1 = *ldz; z_offset = 1 + z_dim1; z__ -= z_offset; --d__; --select; v_dim1 = *ldv; v_offset = 1 + v_dim1; v -= v_offset; --iparam; --ipntr; --workl; /* Function Body */ msglvl = mseupd; mode = iparam[7]; nconv = iparam[5]; *info = 0; /* %--------------% | Quick return | %--------------% */ if (nconv == 0) { goto L9000; } ierr = 0; if (nconv <= 0) { ierr = -14; } if (*n <= 0) { ierr = -1; } if (*nev <= 0) { ierr = -2; } if (*ncv <= *nev || *ncv > *n) { ierr = -3; } if (s_cmp(which, "LM", (ftnlen)2, (ftnlen)2) != 0 && s_cmp(which, "SM", ( ftnlen)2, (ftnlen)2) != 0 && s_cmp(which, "LA", (ftnlen)2, ( ftnlen)2) != 0 && s_cmp(which, "SA", (ftnlen)2, (ftnlen)2) != 0 && s_cmp(which, "BE", (ftnlen)2, (ftnlen)2) != 0) { ierr = -5; } if (*(unsigned char *)bmat != 'I' && *(unsigned char *)bmat != 'G') { ierr = -6; } if (*(unsigned char *)howmny != 'A' && *(unsigned char *)howmny != 'P' && *(unsigned char *)howmny != 'S' && *rvec) { ierr = -15; } if (*rvec && *(unsigned char *)howmny == 'S') { ierr = -16; } /* Computing 2nd power */ i__1 = *ncv; if (*rvec && *lworkl < i__1 * i__1 + (*ncv << 3)) { ierr = -7; } if (mode == 1 || mode == 2) { s_copy(type__, "REGULR", (ftnlen)6, (ftnlen)6); } else if (mode == 3) { s_copy(type__, "SHIFTI", (ftnlen)6, (ftnlen)6); } else if (mode == 4) { s_copy(type__, "BUCKLE", (ftnlen)6, (ftnlen)6); } else if (mode == 5) { s_copy(type__, "CAYLEY", (ftnlen)6, (ftnlen)6); } else { ierr = -10; } if (mode == 1 && *(unsigned char *)bmat == 'G') { ierr = -11; } if (*nev == 1 && s_cmp(which, "BE", (ftnlen)2, (ftnlen)2) == 0) { ierr = -12; } /* %------------% | Error Exit | %------------% */ if (ierr != 0) { *info = ierr; goto L9000; } /* %-------------------------------------------------------% | Pointer into WORKL for address of H, RITZ, BOUNDS, Q | | etc... and the remaining workspace. | | Also update pointer to be used on output. | | Memory is laid out as follows: | | workl(1:2*ncv) := generated tridiagonal matrix H | | The subdiagonal is stored in workl(2:ncv). | | The dead spot is workl(1) but upon exiting | | dsaupd stores the B-norm of the last residual | | vector in workl(1). We use this !!! | | workl(2*ncv+1:2*ncv+ncv) := ritz values | | The wanted values are in the first NCONV spots. | | workl(3*ncv+1:3*ncv+ncv) := computed Ritz estimates | | The wanted values are in the first NCONV spots. | | NOTE: workl(1:4*ncv) is set by dsaupd and is not | | modified by dseupd. | %-------------------------------------------------------% %-------------------------------------------------------% | The following is used and set by dseupd. | | workl(4*ncv+1:4*ncv+ncv) := used as workspace during | | computation of the eigenvectors of H. Stores | | the diagonal of H. Upon EXIT contains the NCV | | Ritz values of the original system. The first | | NCONV spots have the wanted values. If MODE = | | 1 or 2 then will equal workl(2*ncv+1:3*ncv). | | workl(5*ncv+1:5*ncv+ncv) := used as workspace during | | computation of the eigenvectors of H. Stores | | the subdiagonal of H. Upon EXIT contains the | | NCV corresponding Ritz estimates of the | | original system. The first NCONV spots have the | | wanted values. If MODE = 1,2 then will equal | | workl(3*ncv+1:4*ncv). | | workl(6*ncv+1:6*ncv+ncv*ncv) := orthogonal Q that is | | the eigenvector matrix for H as returned by | | dsteqr. Not referenced if RVEC = .False. | | Ordering follows that of workl(4*ncv+1:5*ncv) | | workl(6*ncv+ncv*ncv+1:6*ncv+ncv*ncv+2*ncv) := | | Workspace. Needed by dsteqr and by dseupd. | | GRAND total of NCV*(NCV+8) locations. | %-------------------------------------------------------% */ ih = ipntr[5]; ritz = ipntr[6]; bounds = ipntr[7]; ldh = *ncv; ldq = *ncv; ihd = bounds + ldh; ihb = ihd + ldh; iq = ihb + ldh; iw = iq + ldh * *ncv; next = iw + (*ncv << 1); ipntr[4] = next; ipntr[8] = ihd; ipntr[9] = ihb; ipntr[10] = iq; /* %----------------------------------------% | irz points to the Ritz values computed | | by _seigt before exiting _saup2. | | ibd points to the Ritz estimates | | computed by _seigt before exiting | | _saup2. | %----------------------------------------% */ irz = ipntr[11] + *ncv; ibd = irz + *ncv; /* %---------------------------------% | Set machine dependent constant. | %---------------------------------% */ eps23 = igraphdlamch_("Epsilon-Machine"); eps23 = pow_dd(&eps23, &c_b21); /* %---------------------------------------% | RNORM is B-norm of the RESID(1:N). | | BNORM2 is the 2 norm of B*RESID(1:N). | | Upon exit of dsaupd WORKD(1:N) has | | B*RESID(1:N). | %---------------------------------------% */ rnorm = workl[ih]; if (*(unsigned char *)bmat == 'I') { bnorm2 = rnorm; } else if (*(unsigned char *)bmat == 'G') { bnorm2 = igraphdnrm2_(n, &workd[1], &c__1); } if (*rvec) { /* %------------------------------------------------% | Get the converged Ritz value on the boundary. | | This value will be used to dermine whether we | | need to reorder the eigenvalues and | | eigenvectors comupted by _steqr, and is | | referred to as the "threshold" value. | | | | A Ritz value gamma is said to be a wanted | | one, if | | abs(gamma) .ge. threshold, when WHICH = 'LM'; | | abs(gamma) .le. threshold, when WHICH = 'SM'; | | gamma .ge. threshold, when WHICH = 'LA'; | | gamma .le. threshold, when WHICH = 'SA'; | | gamma .le. thres1 .or. gamma .ge. thres2 | | when WHICH = 'BE'; | | | | Note: converged Ritz values and associated | | Ritz estimates have been placed in the first | | NCONV locations in workl(ritz) and | | workl(bounds) respectively. They have been | | sorted (in _saup2) according to the WHICH | | selection criterion. (Except in the case | | WHICH = 'BE', they are sorted in an increasing | | order.) | %------------------------------------------------% */ if (s_cmp(which, "LM", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(which, "SM", (ftnlen)2, (ftnlen)2) == 0 || s_cmp(which, "LA", ( ftnlen)2, (ftnlen)2) == 0 || s_cmp(which, "SA", (ftnlen)2, ( ftnlen)2) == 0) { thres1 = workl[ritz]; if (msglvl > 2) { igraphdvout_(&logfil, &c__1, &thres1, &ndigit, "_seupd: Threshold " "eigenvalue used for re-ordering", (ftnlen)49); } } else if (s_cmp(which, "BE", (ftnlen)2, (ftnlen)2) == 0) { /* %------------------------------------------------% | Ritz values returned from _saup2 have been | | sorted in increasing order. Thus two | | "threshold" values (one for the small end, one | | for the large end) are in the middle. | %------------------------------------------------% */ ism = max(*nev,nconv) / 2; ilg = ism + 1; thres1 = workl[ism]; thres2 = workl[ilg]; if (msglvl > 2) { kv[0] = thres1; kv[1] = thres2; igraphdvout_(&logfil, &c__2, kv, &ndigit, "_seupd: Threshold eigen" "values used for re-ordering", (ftnlen)50); } } /* %----------------------------------------------------------% | Check to see if all converged Ritz values appear within | | the first NCONV diagonal elements returned from _seigt. | | This is done in the following way: | | | | 1) For each Ritz value obtained from _seigt, compare it | | with the threshold Ritz value computed above to | | determine whether it is a wanted one. | | | | 2) If it is wanted, then check the corresponding Ritz | | estimate to see if it has converged. If it has, set | | correponding entry in the logical array SELECT to | | .TRUE.. | | | | If SELECT(j) = .TRUE. and j > NCONV, then there is a | | converged Ritz value that does not appear at the top of | | the diagonal matrix computed by _seigt in _saup2. | | Reordering is needed. | %----------------------------------------------------------% */ reord = FALSE_; ktrord = 0; i__1 = *ncv - 1; for (j = 0; j <= i__1; ++j) { select[j + 1] = FALSE_; if (s_cmp(which, "LM", (ftnlen)2, (ftnlen)2) == 0) { if ((d__1 = workl[irz + j], abs(d__1)) >= abs(thres1)) { /* Computing MAX */ d__2 = eps23, d__3 = (d__1 = workl[irz + j], abs(d__1)); tempbnd = max(d__2,d__3); if (workl[ibd + j] <= *tol * tempbnd) { select[j + 1] = TRUE_; } } } else if (s_cmp(which, "SM", (ftnlen)2, (ftnlen)2) == 0) { if ((d__1 = workl[irz + j], abs(d__1)) <= abs(thres1)) { /* Computing MAX */ d__2 = eps23, d__3 = (d__1 = workl[irz + j], abs(d__1)); tempbnd = max(d__2,d__3); if (workl[ibd + j] <= *tol * tempbnd) { select[j + 1] = TRUE_; } } } else if (s_cmp(which, "LA", (ftnlen)2, (ftnlen)2) == 0) { if (workl[irz + j] >= thres1) { /* Computing MAX */ d__2 = eps23, d__3 = (d__1 = workl[irz + j], abs(d__1)); tempbnd = max(d__2,d__3); if (workl[ibd + j] <= *tol * tempbnd) { select[j + 1] = TRUE_; } } } else if (s_cmp(which, "SA", (ftnlen)2, (ftnlen)2) == 0) { if (workl[irz + j] <= thres1) { /* Computing MAX */ d__2 = eps23, d__3 = (d__1 = workl[irz + j], abs(d__1)); tempbnd = max(d__2,d__3); if (workl[ibd + j] <= *tol * tempbnd) { select[j + 1] = TRUE_; } } } else if (s_cmp(which, "BE", (ftnlen)2, (ftnlen)2) == 0) { if (workl[irz + j] <= thres1 || workl[irz + j] >= thres2) { /* Computing MAX */ d__2 = eps23, d__3 = (d__1 = workl[irz + j], abs(d__1)); tempbnd = max(d__2,d__3); if (workl[ibd + j] <= *tol * tempbnd) { select[j + 1] = TRUE_; } } } if (j + 1 > nconv) { reord = select[j + 1] || reord; } if (select[j + 1]) { ++ktrord; } /* L10: */ } /* %-------------------------------------------% | If KTRORD .ne. NCONV, something is wrong. | %-------------------------------------------% */ if (msglvl > 2) { igraphivout_(&logfil, &c__1, &ktrord, &ndigit, "_seupd: Number of spec" "ified eigenvalues", (ftnlen)39); igraphivout_(&logfil, &c__1, &nconv, &ndigit, "_seupd: Number of \"con" "verged\" eigenvalues", (ftnlen)41); } /* %-----------------------------------------------------------% | Call LAPACK routine _steqr to compute the eigenvalues and | | eigenvectors of the final symmetric tridiagonal matrix H. | | Initialize the eigenvector matrix Q to the identity. | %-----------------------------------------------------------% */ i__1 = *ncv - 1; igraphdcopy_(&i__1, &workl[ih + 1], &c__1, &workl[ihb], &c__1); igraphdcopy_(ncv, &workl[ih + ldh], &c__1, &workl[ihd], &c__1); igraphdsteqr_("Identity", ncv, &workl[ihd], &workl[ihb], &workl[iq], &ldq, & workl[iw], &ierr); if (ierr != 0) { *info = -8; goto L9000; } if (msglvl > 1) { igraphdcopy_(ncv, &workl[iq + *ncv - 1], &ldq, &workl[iw], &c__1); igraphdvout_(&logfil, ncv, &workl[ihd], &ndigit, "_seupd: NCV Ritz val" "ues of the final H matrix", (ftnlen)45); igraphdvout_(&logfil, ncv, &workl[iw], &ndigit, "_seupd: last row of t" "he eigenvector matrix for H", (ftnlen)48); } if (reord) { /* %---------------------------------------------% | Reordered the eigenvalues and eigenvectors | | computed by _steqr so that the "converged" | | eigenvalues appear in the first NCONV | | positions of workl(ihd), and the associated | | eigenvectors appear in the first NCONV | | columns. | %---------------------------------------------% */ leftptr = 1; rghtptr = *ncv; if (*ncv == 1) { goto L30; } L20: if (select[leftptr]) { /* %-------------------------------------------% | Search, from the left, for the first Ritz | | value that has not converged. | %-------------------------------------------% */ ++leftptr; } else if (! select[rghtptr]) { /* %----------------------------------------------% | Search, from the right, the first Ritz value | | that has converged. | %----------------------------------------------% */ --rghtptr; } else { /* %----------------------------------------------% | Swap the Ritz value on the left that has not | | converged with the Ritz value on the right | | that has converged. Swap the associated | | eigenvector of the tridiagonal matrix H as | | well. | %----------------------------------------------% */ temp = workl[ihd + leftptr - 1]; workl[ihd + leftptr - 1] = workl[ihd + rghtptr - 1]; workl[ihd + rghtptr - 1] = temp; igraphdcopy_(ncv, &workl[iq + *ncv * (leftptr - 1)], &c__1, &workl[ iw], &c__1); igraphdcopy_(ncv, &workl[iq + *ncv * (rghtptr - 1)], &c__1, &workl[ iq + *ncv * (leftptr - 1)], &c__1); igraphdcopy_(ncv, &workl[iw], &c__1, &workl[iq + *ncv * (rghtptr - 1)], &c__1); ++leftptr; --rghtptr; } if (leftptr < rghtptr) { goto L20; } L30: ; } if (msglvl > 2) { igraphdvout_(&logfil, ncv, &workl[ihd], &ndigit, "_seupd: The eigenval" "ues of H--reordered", (ftnlen)39); } /* %----------------------------------------% | Load the converged Ritz values into D. | %----------------------------------------% */ igraphdcopy_(&nconv, &workl[ihd], &c__1, &d__[1], &c__1); } else { /* %-----------------------------------------------------% | Ritz vectors not required. Load Ritz values into D. | %-----------------------------------------------------% */ igraphdcopy_(&nconv, &workl[ritz], &c__1, &d__[1], &c__1); igraphdcopy_(ncv, &workl[ritz], &c__1, &workl[ihd], &c__1); } /* %------------------------------------------------------------------% | Transform the Ritz values and possibly vectors and corresponding | | Ritz estimates of OP to those of A*x=lambda*B*x. The Ritz values | | (and corresponding data) are returned in ascending order. | %------------------------------------------------------------------% */ if (s_cmp(type__, "REGULR", (ftnlen)6, (ftnlen)6) == 0) { /* %---------------------------------------------------------% | Ascending sort of wanted Ritz values, vectors and error | | bounds. Not necessary if only Ritz values are desired. | %---------------------------------------------------------% */ if (*rvec) { igraphdsesrt_("LA", rvec, &nconv, &d__[1], ncv, &workl[iq], &ldq); } else { igraphdcopy_(ncv, &workl[bounds], &c__1, &workl[ihb], &c__1); } } else { /* %-------------------------------------------------------------% | * Make a copy of all the Ritz values. | | * Transform the Ritz values back to the original system. | | For TYPE = 'SHIFTI' the transformation is | | lambda = 1/theta + sigma | | For TYPE = 'BUCKLE' the transformation is | | lambda = sigma * theta / ( theta - 1 ) | | For TYPE = 'CAYLEY' the transformation is | | lambda = sigma * (theta + 1) / (theta - 1 ) | | where the theta are the Ritz values returned by dsaupd. | | NOTES: | | *The Ritz vectors are not affected by the transformation. | | They are only reordered. | %-------------------------------------------------------------% */ igraphdcopy_(ncv, &workl[ihd], &c__1, &workl[iw], &c__1); if (s_cmp(type__, "SHIFTI", (ftnlen)6, (ftnlen)6) == 0) { i__1 = *ncv; for (k = 1; k <= i__1; ++k) { workl[ihd + k - 1] = 1. / workl[ihd + k - 1] + *sigma; /* L40: */ } } else if (s_cmp(type__, "BUCKLE", (ftnlen)6, (ftnlen)6) == 0) { i__1 = *ncv; for (k = 1; k <= i__1; ++k) { workl[ihd + k - 1] = *sigma * workl[ihd + k - 1] / (workl[ihd + k - 1] - 1.); /* L50: */ } } else if (s_cmp(type__, "CAYLEY", (ftnlen)6, (ftnlen)6) == 0) { i__1 = *ncv; for (k = 1; k <= i__1; ++k) { workl[ihd + k - 1] = *sigma * (workl[ihd + k - 1] + 1.) / ( workl[ihd + k - 1] - 1.); /* L60: */ } } /* %-------------------------------------------------------------% | * Store the wanted NCONV lambda values into D. | | * Sort the NCONV wanted lambda in WORKL(IHD:IHD+NCONV-1) | | into ascending order and apply sort to the NCONV theta | | values in the transformed system. We'll need this to | | compute Ritz estimates in the original system. | | * Finally sort the lambda's into ascending order and apply | | to Ritz vectors if wanted. Else just sort lambda's into | | ascending order. | | NOTES: | | *workl(iw:iw+ncv-1) contain the theta ordered so that they | | match the ordering of the lambda. We'll use them again for | | Ritz vector purification. | %-------------------------------------------------------------% */ igraphdcopy_(&nconv, &workl[ihd], &c__1, &d__[1], &c__1); igraphdsortr_("LA", &c_true, &nconv, &workl[ihd], &workl[iw]); if (*rvec) { igraphdsesrt_("LA", rvec, &nconv, &d__[1], ncv, &workl[iq], &ldq); } else { igraphdcopy_(ncv, &workl[bounds], &c__1, &workl[ihb], &c__1); d__1 = bnorm2 / rnorm; igraphdscal_(ncv, &d__1, &workl[ihb], &c__1); igraphdsortr_("LA", &c_true, &nconv, &d__[1], &workl[ihb]); } } /* %------------------------------------------------% | Compute the Ritz vectors. Transform the wanted | | eigenvectors of the symmetric tridiagonal H by | | the Lanczos basis matrix V. | %------------------------------------------------% */ if (*rvec && *(unsigned char *)howmny == 'A') { /* %----------------------------------------------------------% | Compute the QR factorization of the matrix representing | | the wanted invariant subspace located in the first NCONV | | columns of workl(iq,ldq). | %----------------------------------------------------------% */ igraphdgeqr2_(ncv, &nconv, &workl[iq], &ldq, &workl[iw + *ncv], &workl[ihb], &ierr); /* %--------------------------------------------------------% | * Postmultiply V by Q. | | * Copy the first NCONV columns of VQ into Z. | | The N by NCONV matrix Z is now a matrix representation | | of the approximate invariant subspace associated with | | the Ritz values in workl(ihd). | %--------------------------------------------------------% */ igraphdorm2r_("Right", "Notranspose", n, ncv, &nconv, &workl[iq], &ldq, & workl[iw + *ncv], &v[v_offset], ldv, &workd[*n + 1], &ierr); igraphdlacpy_("All", n, &nconv, &v[v_offset], ldv, &z__[z_offset], ldz); /* %-----------------------------------------------------% | In order to compute the Ritz estimates for the Ritz | | values in both systems, need the last row of the | | eigenvector matrix. Remember, it's in factored form | %-----------------------------------------------------% */ i__1 = *ncv - 1; for (j = 1; j <= i__1; ++j) { workl[ihb + j - 1] = 0.; /* L65: */ } workl[ihb + *ncv - 1] = 1.; igraphdorm2r_("Left", "Transpose", ncv, &c__1, &nconv, &workl[iq], &ldq, & workl[iw + *ncv], &workl[ihb], ncv, &temp, &ierr); } else if (*rvec && *(unsigned char *)howmny == 'S') { /* Not yet implemented. See remark 2 above. */ } if (s_cmp(type__, "REGULR", (ftnlen)6, (ftnlen)6) == 0 && *rvec) { i__1 = *ncv; for (j = 1; j <= i__1; ++j) { workl[ihb + j - 1] = rnorm * (d__1 = workl[ihb + j - 1], abs(d__1) ); /* L70: */ } } else if (s_cmp(type__, "REGULR", (ftnlen)6, (ftnlen)6) != 0 && *rvec) { /* %-------------------------------------------------% | * Determine Ritz estimates of the theta. | | If RVEC = .true. then compute Ritz estimates | | of the theta. | | If RVEC = .false. then copy Ritz estimates | | as computed by dsaupd. | | * Determine Ritz estimates of the lambda. | %-------------------------------------------------% */ igraphdscal_(ncv, &bnorm2, &workl[ihb], &c__1); if (s_cmp(type__, "SHIFTI", (ftnlen)6, (ftnlen)6) == 0) { i__1 = *ncv; for (k = 1; k <= i__1; ++k) { /* Computing 2nd power */ d__2 = workl[iw + k - 1]; workl[ihb + k - 1] = (d__1 = workl[ihb + k - 1], abs(d__1)) / (d__2 * d__2); /* L80: */ } } else if (s_cmp(type__, "BUCKLE", (ftnlen)6, (ftnlen)6) == 0) { i__1 = *ncv; for (k = 1; k <= i__1; ++k) { /* Computing 2nd power */ d__2 = workl[iw + k - 1] - 1.; workl[ihb + k - 1] = *sigma * (d__1 = workl[ihb + k - 1], abs( d__1)) / (d__2 * d__2); /* L90: */ } } else if (s_cmp(type__, "CAYLEY", (ftnlen)6, (ftnlen)6) == 0) { i__1 = *ncv; for (k = 1; k <= i__1; ++k) { workl[ihb + k - 1] = (d__1 = workl[ihb + k - 1] / workl[iw + k - 1] * (workl[iw + k - 1] - 1.), abs(d__1)); /* L100: */ } } } if (s_cmp(type__, "REGULR", (ftnlen)6, (ftnlen)6) != 0 && msglvl > 1) { igraphdvout_(&logfil, &nconv, &d__[1], &ndigit, "_seupd: Untransformed con" "verged Ritz values", (ftnlen)43); igraphdvout_(&logfil, &nconv, &workl[ihb], &ndigit, "_seupd: Ritz estimate" "s of the untransformed Ritz values", (ftnlen)55); } else if (msglvl > 1) { igraphdvout_(&logfil, &nconv, &d__[1], &ndigit, "_seupd: Converged Ritz va" "lues", (ftnlen)29); igraphdvout_(&logfil, &nconv, &workl[ihb], &ndigit, "_seupd: Associated Ri" "tz estimates", (ftnlen)33); } /* %-------------------------------------------------% | Ritz vector purification step. Formally perform | | one of inverse subspace iteration. Only used | | for MODE = 3,4,5. See reference 7 | %-------------------------------------------------% */ if (*rvec && (s_cmp(type__, "SHIFTI", (ftnlen)6, (ftnlen)6) == 0 || s_cmp( type__, "CAYLEY", (ftnlen)6, (ftnlen)6) == 0)) { i__1 = nconv - 1; for (k = 0; k <= i__1; ++k) { workl[iw + k] = workl[iq + k * ldq + *ncv - 1] / workl[iw + k]; /* L110: */ } } else if (*rvec && s_cmp(type__, "BUCKLE", (ftnlen)6, (ftnlen)6) == 0) { i__1 = nconv - 1; for (k = 0; k <= i__1; ++k) { workl[iw + k] = workl[iq + k * ldq + *ncv - 1] / (workl[iw + k] - 1.); /* L120: */ } } if (s_cmp(type__, "REGULR", (ftnlen)6, (ftnlen)6) != 0) { igraphdger_(n, &nconv, &c_b119, &resid[1], &c__1, &workl[iw], &c__1, &z__[ z_offset], ldz); } L9000: return 0; /* %---------------% | End of dseupd | %---------------% */ } /* igraphdseupd_ */