/* -- translated by f2c (version 20191129).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
/* Table of constant values */
static integer c__1 = 1;
static integer c_n1 = -1;
static integer c__3 = 3;
static integer c__2 = 2;
static integer c__0 = 0;
/* > \brief \b DSTEBZ
=========== DOCUMENTATION ===========
Online html documentation available at
http://www.netlib.org/lapack/explore-html/
> \htmlonly
> Download DSTEBZ + dependencies
>
> [TGZ]
>
> [ZIP]
>
> [TXT]
> \endhtmlonly
Definition:
===========
SUBROUTINE DSTEBZ( RANGE, ORDER, N, VL, VU, IL, IU, ABSTOL, D, E,
M, NSPLIT, W, IBLOCK, ISPLIT, WORK, IWORK,
INFO )
CHARACTER ORDER, RANGE
INTEGER IL, INFO, IU, M, N, NSPLIT
DOUBLE PRECISION ABSTOL, VL, VU
INTEGER IBLOCK( * ), ISPLIT( * ), IWORK( * )
DOUBLE PRECISION D( * ), E( * ), W( * ), WORK( * )
> \par Purpose:
=============
>
> \verbatim
>
> DSTEBZ computes the eigenvalues of a symmetric tridiagonal
> matrix T. The user may ask for all eigenvalues, all eigenvalues
> in the half-open interval (VL, VU], or the IL-th through IU-th
> eigenvalues.
>
> To avoid overflow, the matrix must be scaled so that its
> largest element is no greater than overflow**(1/2) * underflow**(1/4) in absolute value, and for greatest
> accuracy, it should not be much smaller than that.
>
> See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal
> Matrix", Report CS41, Computer Science Dept., Stanford
> University, July 21, 1966.
> \endverbatim
Arguments:
==========
> \param[in] RANGE
> \verbatim
> RANGE is CHARACTER*1
> = 'A': ("All") all eigenvalues will be found.
> = 'V': ("Value") all eigenvalues in the half-open interval
> (VL, VU] will be found.
> = 'I': ("Index") the IL-th through IU-th eigenvalues (of the
> entire matrix) will be found.
> \endverbatim
>
> \param[in] ORDER
> \verbatim
> ORDER is CHARACTER*1
> = 'B': ("By Block") the eigenvalues will be grouped by
> split-off block (see IBLOCK, ISPLIT) and
> ordered from smallest to largest within
> the block.
> = 'E': ("Entire matrix")
> the eigenvalues for the entire matrix
> will be ordered from smallest to
> largest.
> \endverbatim
>
> \param[in] N
> \verbatim
> N is INTEGER
> The order of the tridiagonal matrix T. N >= 0.
> \endverbatim
>
> \param[in] VL
> \verbatim
> VL is DOUBLE PRECISION
> \endverbatim
>
> \param[in] VU
> \verbatim
> VU is DOUBLE PRECISION
>
> If RANGE='V', the lower and upper bounds of the interval to
> be searched for eigenvalues. Eigenvalues less than or equal
> to VL, or greater than VU, will not be returned. VL < VU.
> Not referenced if RANGE = 'A' or 'I'.
> \endverbatim
>
> \param[in] IL
> \verbatim
> IL is INTEGER
> \endverbatim
>
> \param[in] IU
> \verbatim
> IU is INTEGER
>
> If RANGE='I', the indices (in ascending order) of the
> smallest and largest eigenvalues to be returned.
> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
> Not referenced if RANGE = 'A' or 'V'.
> \endverbatim
>
> \param[in] ABSTOL
> \verbatim
> ABSTOL is DOUBLE PRECISION
> The absolute tolerance for the eigenvalues. An eigenvalue
> (or cluster) is considered to be located if it has been
> determined to lie in an interval whose width is ABSTOL or
> less. If ABSTOL is less than or equal to zero, then ULP*|T|
> will be used, where |T| means the 1-norm of T.
>
> Eigenvalues will be computed most accurately when ABSTOL is
> set to twice the underflow threshold 2*DLAMCH('S'), not zero.
> \endverbatim
>
> \param[in] D
> \verbatim
> D is DOUBLE PRECISION array, dimension (N)
> The n diagonal elements of the tridiagonal matrix T.
> \endverbatim
>
> \param[in] E
> \verbatim
> E is DOUBLE PRECISION array, dimension (N-1)
> The (n-1) off-diagonal elements of the tridiagonal matrix T.
> \endverbatim
>
> \param[out] M
> \verbatim
> M is INTEGER
> The actual number of eigenvalues found. 0 <= M <= N.
> (See also the description of INFO=2,3.)
> \endverbatim
>
> \param[out] NSPLIT
> \verbatim
> NSPLIT is INTEGER
> The number of diagonal blocks in the matrix T.
> 1 <= NSPLIT <= N.
> \endverbatim
>
> \param[out] W
> \verbatim
> W is DOUBLE PRECISION array, dimension (N)
> On exit, the first M elements of W will contain the
> eigenvalues. (DSTEBZ may use the remaining N-M elements as
> workspace.)
> \endverbatim
>
> \param[out] IBLOCK
> \verbatim
> IBLOCK is INTEGER array, dimension (N)
> At each row/column j where E(j) is zero or small, the
> matrix T is considered to split into a block diagonal
> matrix. On exit, if INFO = 0, IBLOCK(i) specifies to which
> block (from 1 to the number of blocks) the eigenvalue W(i)
> belongs. (DSTEBZ may use the remaining N-M elements as
> workspace.)
> \endverbatim
>
> \param[out] ISPLIT
> \verbatim
> ISPLIT is INTEGER array, dimension (N)
> The splitting points, at which T breaks up into submatrices.
> The first submatrix consists of rows/columns 1 to ISPLIT(1),
> the second of rows/columns ISPLIT(1)+1 through ISPLIT(2),
> etc., and the NSPLIT-th consists of rows/columns
> ISPLIT(NSPLIT-1)+1 through ISPLIT(NSPLIT)=N.
> (Only the first NSPLIT elements will actually be used, but
> since the user cannot know a priori what value NSPLIT will
> have, N words must be reserved for ISPLIT.)
> \endverbatim
>
> \param[out] WORK
> \verbatim
> WORK is DOUBLE PRECISION array, dimension (4*N)
> \endverbatim
>
> \param[out] IWORK
> \verbatim
> IWORK is INTEGER array, dimension (3*N)
> \endverbatim
>
> \param[out] INFO
> \verbatim
> INFO is INTEGER
> = 0: successful exit
> < 0: if INFO = -i, the i-th argument had an illegal value
> > 0: some or all of the eigenvalues failed to converge or
> were not computed:
> =1 or 3: Bisection failed to converge for some
> eigenvalues; these eigenvalues are flagged by a
> negative block number. The effect is that the
> eigenvalues may not be as accurate as the
> absolute and relative tolerances. This is
> generally caused by unexpectedly inaccurate
> arithmetic.
> =2 or 3: RANGE='I' only: Not all of the eigenvalues
> IL:IU were found.
> Effect: M < IU+1-IL
> Cause: non-monotonic arithmetic, causing the
> Sturm sequence to be non-monotonic.
> Cure: recalculate, using RANGE='A', and pick
> out eigenvalues IL:IU. In some cases,
> increasing the PARAMETER "FUDGE" may
> make things work.
> = 4: RANGE='I', and the Gershgorin interval
> initially used was too small. No eigenvalues
> were computed.
> Probable cause: your machine has sloppy
> floating-point arithmetic.
> Cure: Increase the PARAMETER "FUDGE",
> recompile, and try again.
> \endverbatim
> \par Internal Parameters:
=========================
>
> \verbatim
> RELFAC DOUBLE PRECISION, default = 2.0e0
> The relative tolerance. An interval (a,b] lies within
> "relative tolerance" if b-a < RELFAC*ulp*max(|a|,|b|),
> where "ulp" is the machine precision (distance from 1 to
> the next larger floating point number.)
>
> FUDGE DOUBLE PRECISION, default = 2
> A "fudge factor" to widen the Gershgorin intervals. Ideally,
> a value of 1 should work, but on machines with sloppy
> arithmetic, this needs to be larger. The default for
> publicly released versions should be large enough to handle
> the worst machine around. Note that this has no effect
> on accuracy of the solution.
> \endverbatim
Authors:
========
> \author Univ. of Tennessee
> \author Univ. of California Berkeley
> \author Univ. of Colorado Denver
> \author NAG Ltd.
> \date November 2011
> \ingroup auxOTHERcomputational
=====================================================================
Subroutine */ int igraphdstebz_(char *range, char *order, integer *n, doublereal
*vl, doublereal *vu, integer *il, integer *iu, doublereal *abstol,
doublereal *d__, doublereal *e, integer *m, integer *nsplit,
doublereal *w, integer *iblock, integer *isplit, doublereal *work,
integer *iwork, integer *info)
{
/* System generated locals */
integer i__1, i__2, i__3;
doublereal d__1, d__2, d__3, d__4, d__5;
/* Builtin functions */
double sqrt(doublereal), log(doublereal);
/* Local variables */
integer j, ib, jb, ie, je, nb;
doublereal gl;
integer im, in;
doublereal gu;
integer iw;
doublereal wl, wu;
integer nwl;
doublereal ulp, wlu, wul;
integer nwu;
doublereal tmp1, tmp2;
integer iend, ioff, iout, itmp1, jdisc;
extern logical igraphlsame_(char *, char *);
integer iinfo;
doublereal atoli;
integer iwoff;
doublereal bnorm;
integer itmax;
doublereal wkill, rtoli, tnorm;
extern doublereal igraphdlamch_(char *);
integer ibegin;
extern /* Subroutine */ int igraphdlaebz_(integer *, integer *, integer *,
integer *, integer *, integer *, doublereal *, doublereal *,
doublereal *, doublereal *, doublereal *, doublereal *, integer *,
doublereal *, doublereal *, integer *, integer *, doublereal *,
integer *, integer *);
integer irange, idiscl;
doublereal safemn;
integer idumma[1];
extern /* Subroutine */ int igraphxerbla_(char *, integer *, ftnlen);
extern integer igraphilaenv_(integer *, char *, char *, integer *, integer *,
integer *, integer *, ftnlen, ftnlen);
integer idiscu, iorder;
logical ncnvrg;
doublereal pivmin;
logical toofew;
/* -- LAPACK computational routine (version 3.4.0) --
-- LAPACK is a software package provided by Univ. of Tennessee, --
-- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
November 2011
=====================================================================
Parameter adjustments */
--iwork;
--work;
--isplit;
--iblock;
--w;
--e;
--d__;
/* Function Body */
*info = 0;
/* Decode RANGE */
if (igraphlsame_(range, "A")) {
irange = 1;
} else if (igraphlsame_(range, "V")) {
irange = 2;
} else if (igraphlsame_(range, "I")) {
irange = 3;
} else {
irange = 0;
}
/* Decode ORDER */
if (igraphlsame_(order, "B")) {
iorder = 2;
} else if (igraphlsame_(order, "E")) {
iorder = 1;
} else {
iorder = 0;
}
/* Check for Errors */
if (irange <= 0) {
*info = -1;
} else if (iorder <= 0) {
*info = -2;
} else if (*n < 0) {
*info = -3;
} else if (irange == 2) {
if (*vl >= *vu) {
*info = -5;
}
} else if (irange == 3 && (*il < 1 || *il > max(1,*n))) {
*info = -6;
} else if (irange == 3 && (*iu < min(*n,*il) || *iu > *n)) {
*info = -7;
}
if (*info != 0) {
i__1 = -(*info);
igraphxerbla_("DSTEBZ", &i__1, (ftnlen)6);
return 0;
}
/* Initialize error flags */
*info = 0;
ncnvrg = FALSE_;
toofew = FALSE_;
/* Quick return if possible */
*m = 0;
if (*n == 0) {
return 0;
}
/* Simplifications: */
if (irange == 3 && *il == 1 && *iu == *n) {
irange = 1;
}
/* Get machine constants
NB is the minimum vector length for vector bisection, or 0
if only scalar is to be done. */
safemn = igraphdlamch_("S");
ulp = igraphdlamch_("P");
rtoli = ulp * 2.;
nb = igraphilaenv_(&c__1, "DSTEBZ", " ", n, &c_n1, &c_n1, &c_n1, (ftnlen)6, (
ftnlen)1);
if (nb <= 1) {
nb = 0;
}
/* Special Case when N=1 */
if (*n == 1) {
*nsplit = 1;
isplit[1] = 1;
if (irange == 2 && (*vl >= d__[1] || *vu < d__[1])) {
*m = 0;
} else {
w[1] = d__[1];
iblock[1] = 1;
*m = 1;
}
return 0;
}
/* Compute Splitting Points */
*nsplit = 1;
work[*n] = 0.;
pivmin = 1.;
i__1 = *n;
for (j = 2; j <= i__1; ++j) {
/* Computing 2nd power */
d__1 = e[j - 1];
tmp1 = d__1 * d__1;
/* Computing 2nd power */
d__2 = ulp;
if ((d__1 = d__[j] * d__[j - 1], abs(d__1)) * (d__2 * d__2) + safemn
> tmp1) {
isplit[*nsplit] = j - 1;
++(*nsplit);
work[j - 1] = 0.;
} else {
work[j - 1] = tmp1;
pivmin = max(pivmin,tmp1);
}
/* L10: */
}
isplit[*nsplit] = *n;
pivmin *= safemn;
/* Compute Interval and ATOLI */
if (irange == 3) {
/* RANGE='I': Compute the interval containing eigenvalues
IL through IU.
Compute Gershgorin interval for entire (split) matrix
and use it as the initial interval */
gu = d__[1];
gl = d__[1];
tmp1 = 0.;
i__1 = *n - 1;
for (j = 1; j <= i__1; ++j) {
tmp2 = sqrt(work[j]);
/* Computing MAX */
d__1 = gu, d__2 = d__[j] + tmp1 + tmp2;
gu = max(d__1,d__2);
/* Computing MIN */
d__1 = gl, d__2 = d__[j] - tmp1 - tmp2;
gl = min(d__1,d__2);
tmp1 = tmp2;
/* L20: */
}
/* Computing MAX */
d__1 = gu, d__2 = d__[*n] + tmp1;
gu = max(d__1,d__2);
/* Computing MIN */
d__1 = gl, d__2 = d__[*n] - tmp1;
gl = min(d__1,d__2);
/* Computing MAX */
d__1 = abs(gl), d__2 = abs(gu);
tnorm = max(d__1,d__2);
gl = gl - tnorm * 2.1 * ulp * *n - pivmin * 4.2000000000000002;
gu = gu + tnorm * 2.1 * ulp * *n + pivmin * 2.1;
/* Compute Iteration parameters */
itmax = (integer) ((log(tnorm + pivmin) - log(pivmin)) / log(2.)) + 2;
if (*abstol <= 0.) {
atoli = ulp * tnorm;
} else {
atoli = *abstol;
}
work[*n + 1] = gl;
work[*n + 2] = gl;
work[*n + 3] = gu;
work[*n + 4] = gu;
work[*n + 5] = gl;
work[*n + 6] = gu;
iwork[1] = -1;
iwork[2] = -1;
iwork[3] = *n + 1;
iwork[4] = *n + 1;
iwork[5] = *il - 1;
iwork[6] = *iu;
igraphdlaebz_(&c__3, &itmax, n, &c__2, &c__2, &nb, &atoli, &rtoli, &pivmin,
&d__[1], &e[1], &work[1], &iwork[5], &work[*n + 1], &work[*n
+ 5], &iout, &iwork[1], &w[1], &iblock[1], &iinfo);
if (iwork[6] == *iu) {
wl = work[*n + 1];
wlu = work[*n + 3];
nwl = iwork[1];
wu = work[*n + 4];
wul = work[*n + 2];
nwu = iwork[4];
} else {
wl = work[*n + 2];
wlu = work[*n + 4];
nwl = iwork[2];
wu = work[*n + 3];
wul = work[*n + 1];
nwu = iwork[3];
}
if (nwl < 0 || nwl >= *n || nwu < 1 || nwu > *n) {
*info = 4;
return 0;
}
} else {
/* RANGE='A' or 'V' -- Set ATOLI
Computing MAX */
d__3 = abs(d__[1]) + abs(e[1]), d__4 = (d__1 = d__[*n], abs(d__1)) + (
d__2 = e[*n - 1], abs(d__2));
tnorm = max(d__3,d__4);
i__1 = *n - 1;
for (j = 2; j <= i__1; ++j) {
/* Computing MAX */
d__4 = tnorm, d__5 = (d__1 = d__[j], abs(d__1)) + (d__2 = e[j - 1]
, abs(d__2)) + (d__3 = e[j], abs(d__3));
tnorm = max(d__4,d__5);
/* L30: */
}
if (*abstol <= 0.) {
atoli = ulp * tnorm;
} else {
atoli = *abstol;
}
if (irange == 2) {
wl = *vl;
wu = *vu;
} else {
wl = 0.;
wu = 0.;
}
}
/* Find Eigenvalues -- Loop Over Blocks and recompute NWL and NWU.
NWL accumulates the number of eigenvalues .le. WL,
NWU accumulates the number of eigenvalues .le. WU */
*m = 0;
iend = 0;
*info = 0;
nwl = 0;
nwu = 0;
i__1 = *nsplit;
for (jb = 1; jb <= i__1; ++jb) {
ioff = iend;
ibegin = ioff + 1;
iend = isplit[jb];
in = iend - ioff;
if (in == 1) {
/* Special Case -- IN=1 */
if (irange == 1 || wl >= d__[ibegin] - pivmin) {
++nwl;
}
if (irange == 1 || wu >= d__[ibegin] - pivmin) {
++nwu;
}
if (irange == 1 || wl < d__[ibegin] - pivmin && wu >= d__[ibegin]
- pivmin) {
++(*m);
w[*m] = d__[ibegin];
iblock[*m] = jb;
}
} else {
/* General Case -- IN > 1
Compute Gershgorin Interval
and use it as the initial interval */
gu = d__[ibegin];
gl = d__[ibegin];
tmp1 = 0.;
i__2 = iend - 1;
for (j = ibegin; j <= i__2; ++j) {
tmp2 = (d__1 = e[j], abs(d__1));
/* Computing MAX */
d__1 = gu, d__2 = d__[j] + tmp1 + tmp2;
gu = max(d__1,d__2);
/* Computing MIN */
d__1 = gl, d__2 = d__[j] - tmp1 - tmp2;
gl = min(d__1,d__2);
tmp1 = tmp2;
/* L40: */
}
/* Computing MAX */
d__1 = gu, d__2 = d__[iend] + tmp1;
gu = max(d__1,d__2);
/* Computing MIN */
d__1 = gl, d__2 = d__[iend] - tmp1;
gl = min(d__1,d__2);
/* Computing MAX */
d__1 = abs(gl), d__2 = abs(gu);
bnorm = max(d__1,d__2);
gl = gl - bnorm * 2.1 * ulp * in - pivmin * 2.1;
gu = gu + bnorm * 2.1 * ulp * in + pivmin * 2.1;
/* Compute ATOLI for the current submatrix */
if (*abstol <= 0.) {
/* Computing MAX */
d__1 = abs(gl), d__2 = abs(gu);
atoli = ulp * max(d__1,d__2);
} else {
atoli = *abstol;
}
if (irange > 1) {
if (gu < wl) {
nwl += in;
nwu += in;
goto L70;
}
gl = max(gl,wl);
gu = min(gu,wu);
if (gl >= gu) {
goto L70;
}
}
/* Set Up Initial Interval */
work[*n + 1] = gl;
work[*n + in + 1] = gu;
igraphdlaebz_(&c__1, &c__0, &in, &in, &c__1, &nb, &atoli, &rtoli, &
pivmin, &d__[ibegin], &e[ibegin], &work[ibegin], idumma, &
work[*n + 1], &work[*n + (in << 1) + 1], &im, &iwork[1], &
w[*m + 1], &iblock[*m + 1], &iinfo);
nwl += iwork[1];
nwu += iwork[in + 1];
iwoff = *m - iwork[1];
/* Compute Eigenvalues */
itmax = (integer) ((log(gu - gl + pivmin) - log(pivmin)) / log(2.)
) + 2;
igraphdlaebz_(&c__2, &itmax, &in, &in, &c__1, &nb, &atoli, &rtoli, &
pivmin, &d__[ibegin], &e[ibegin], &work[ibegin], idumma, &
work[*n + 1], &work[*n + (in << 1) + 1], &iout, &iwork[1],
&w[*m + 1], &iblock[*m + 1], &iinfo);
/* Copy Eigenvalues Into W and IBLOCK
Use -JB for block number for unconverged eigenvalues. */
i__2 = iout;
for (j = 1; j <= i__2; ++j) {
tmp1 = (work[j + *n] + work[j + in + *n]) * .5;
/* Flag non-convergence. */
if (j > iout - iinfo) {
ncnvrg = TRUE_;
ib = -jb;
} else {
ib = jb;
}
i__3 = iwork[j + in] + iwoff;
for (je = iwork[j] + 1 + iwoff; je <= i__3; ++je) {
w[je] = tmp1;
iblock[je] = ib;
/* L50: */
}
/* L60: */
}
*m += im;
}
L70:
;
}
/* If RANGE='I', then (WL,WU) contains eigenvalues NWL+1,...,NWU
If NWL+1 < IL or NWU > IU, discard extra eigenvalues. */
if (irange == 3) {
im = 0;
idiscl = *il - 1 - nwl;
idiscu = nwu - *iu;
if (idiscl > 0 || idiscu > 0) {
i__1 = *m;
for (je = 1; je <= i__1; ++je) {
if (w[je] <= wlu && idiscl > 0) {
--idiscl;
} else if (w[je] >= wul && idiscu > 0) {
--idiscu;
} else {
++im;
w[im] = w[je];
iblock[im] = iblock[je];
}
/* L80: */
}
*m = im;
}
if (idiscl > 0 || idiscu > 0) {
/* Code to deal with effects of bad arithmetic:
Some low eigenvalues to be discarded are not in (WL,WLU],
or high eigenvalues to be discarded are not in (WUL,WU]
so just kill off the smallest IDISCL/largest IDISCU
eigenvalues, by simply finding the smallest/largest
eigenvalue(s).
(If N(w) is monotone non-decreasing, this should never
happen.) */
if (idiscl > 0) {
wkill = wu;
i__1 = idiscl;
for (jdisc = 1; jdisc <= i__1; ++jdisc) {
iw = 0;
i__2 = *m;
for (je = 1; je <= i__2; ++je) {
if (iblock[je] != 0 && (w[je] < wkill || iw == 0)) {
iw = je;
wkill = w[je];
}
/* L90: */
}
iblock[iw] = 0;
/* L100: */
}
}
if (idiscu > 0) {
wkill = wl;
i__1 = idiscu;
for (jdisc = 1; jdisc <= i__1; ++jdisc) {
iw = 0;
i__2 = *m;
for (je = 1; je <= i__2; ++je) {
if (iblock[je] != 0 && (w[je] > wkill || iw == 0)) {
iw = je;
wkill = w[je];
}
/* L110: */
}
iblock[iw] = 0;
/* L120: */
}
}
im = 0;
i__1 = *m;
for (je = 1; je <= i__1; ++je) {
if (iblock[je] != 0) {
++im;
w[im] = w[je];
iblock[im] = iblock[je];
}
/* L130: */
}
*m = im;
}
if (idiscl < 0 || idiscu < 0) {
toofew = TRUE_;
}
}
/* If ORDER='B', do nothing -- the eigenvalues are already sorted
by block.
If ORDER='E', sort the eigenvalues from smallest to largest */
if (iorder == 1 && *nsplit > 1) {
i__1 = *m - 1;
for (je = 1; je <= i__1; ++je) {
ie = 0;
tmp1 = w[je];
i__2 = *m;
for (j = je + 1; j <= i__2; ++j) {
if (w[j] < tmp1) {
ie = j;
tmp1 = w[j];
}
/* L140: */
}
if (ie != 0) {
itmp1 = iblock[ie];
w[ie] = w[je];
iblock[ie] = iblock[je];
w[je] = tmp1;
iblock[je] = itmp1;
}
/* L150: */
}
}
*info = 0;
if (ncnvrg) {
++(*info);
}
if (toofew) {
*info += 2;
}
return 0;
/* End of DSTEBZ */
} /* igraphdstebz_ */