/* -- translated by f2c (version 20191129).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
/* Table of constant values */
static integer c__1 = 1;
static doublereal c_b18 = .001;
/* > \brief \b DSTEMR
=========== DOCUMENTATION ===========
Online html documentation available at
http://www.netlib.org/lapack/explore-html/
> \htmlonly
> Download DSTEMR + dependencies
>
> [TGZ]
>
> [ZIP]
>
> [TXT]
> \endhtmlonly
Definition:
===========
SUBROUTINE DSTEMR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU,
M, W, Z, LDZ, NZC, ISUPPZ, TRYRAC, WORK, LWORK,
IWORK, LIWORK, INFO )
CHARACTER JOBZ, RANGE
LOGICAL TRYRAC
INTEGER IL, INFO, IU, LDZ, NZC, LIWORK, LWORK, M, N
DOUBLE PRECISION VL, VU
INTEGER ISUPPZ( * ), IWORK( * )
DOUBLE PRECISION D( * ), E( * ), W( * ), WORK( * )
DOUBLE PRECISION Z( LDZ, * )
> \par Purpose:
=============
>
> \verbatim
>
> DSTEMR computes selected eigenvalues and, optionally, eigenvectors
> of a real symmetric tridiagonal matrix T. Any such unreduced matrix has
> a well defined set of pairwise different real eigenvalues, the corresponding
> real eigenvectors are pairwise orthogonal.
>
> The spectrum may be computed either completely or partially by specifying
> either an interval (VL,VU] or a range of indices IL:IU for the desired
> eigenvalues.
>
> Depending on the number of desired eigenvalues, these are computed either
> by bisection or the dqds algorithm. Numerically orthogonal eigenvectors are
> computed by the use of various suitable L D L^T factorizations near clusters
> of close eigenvalues (referred to as RRRs, Relatively Robust
> Representations). An informal sketch of the algorithm follows.
>
> For each unreduced block (submatrix) of T,
> (a) Compute T - sigma I = L D L^T, so that L and D
> define all the wanted eigenvalues to high relative accuracy.
> This means that small relative changes in the entries of D and L
> cause only small relative changes in the eigenvalues and
> eigenvectors. The standard (unfactored) representation of the
> tridiagonal matrix T does not have this property in general.
> (b) Compute the eigenvalues to suitable accuracy.
> If the eigenvectors are desired, the algorithm attains full
> accuracy of the computed eigenvalues only right before
> the corresponding vectors have to be computed, see steps c) and d).
> (c) For each cluster of close eigenvalues, select a new
> shift close to the cluster, find a new factorization, and refine
> the shifted eigenvalues to suitable accuracy.
> (d) For each eigenvalue with a large enough relative separation compute
> the corresponding eigenvector by forming a rank revealing twisted
> factorization. Go back to (c) for any clusters that remain.
>
> For more details, see:
> - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations
> to compute orthogonal eigenvectors of symmetric tridiagonal matrices,"
> Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004.
> - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and
> Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25,
> 2004. Also LAPACK Working Note 154.
> - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric
> tridiagonal eigenvalue/eigenvector problem",
> Computer Science Division Technical Report No. UCB/CSD-97-971,
> UC Berkeley, May 1997.
>
> Further Details
> 1.DSTEMR works only on machines which follow IEEE-754
> floating-point standard in their handling of infinities and NaNs.
> This permits the use of efficient inner loops avoiding a check for
> zero divisors.
> \endverbatim
Arguments:
==========
> \param[in] JOBZ
> \verbatim
> JOBZ is CHARACTER*1
> = 'N': Compute eigenvalues only;
> = 'V': Compute eigenvalues and eigenvectors.
> \endverbatim
>
> \param[in] RANGE
> \verbatim
> RANGE is CHARACTER*1
> = 'A': all eigenvalues will be found.
> = 'V': all eigenvalues in the half-open interval (VL,VU]
> will be found.
> = 'I': the IL-th through IU-th eigenvalues will be found.
> \endverbatim
>
> \param[in] N
> \verbatim
> N is INTEGER
> The order of the matrix. N >= 0.
> \endverbatim
>
> \param[in,out] D
> \verbatim
> D is DOUBLE PRECISION array, dimension (N)
> On entry, the N diagonal elements of the tridiagonal matrix
> T. On exit, D is overwritten.
> \endverbatim
>
> \param[in,out] E
> \verbatim
> E is DOUBLE PRECISION array, dimension (N)
> On entry, the (N-1) subdiagonal elements of the tridiagonal
> matrix T in elements 1 to N-1 of E. E(N) need not be set on
> input, but is used internally as workspace.
> On exit, E is overwritten.
> \endverbatim
>
> \param[in] VL
> \verbatim
> VL is DOUBLE PRECISION
> \endverbatim
>
> \param[in] VU
> \verbatim
> VU is DOUBLE PRECISION
>
> If RANGE='V', the lower and upper bounds of the interval to
> be searched for eigenvalues. VL < VU.
> Not referenced if RANGE = 'A' or 'I'.
> \endverbatim
>
> \param[in] IL
> \verbatim
> IL is INTEGER
> \endverbatim
>
> \param[in] IU
> \verbatim
> IU is INTEGER
>
> If RANGE='I', the indices (in ascending order) of the
> smallest and largest eigenvalues to be returned.
> 1 <= IL <= IU <= N, if N > 0.
> Not referenced if RANGE = 'A' or 'V'.
> \endverbatim
>
> \param[out] M
> \verbatim
> M is INTEGER
> The total number of eigenvalues found. 0 <= M <= N.
> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
> \endverbatim
>
> \param[out] W
> \verbatim
> W is DOUBLE PRECISION array, dimension (N)
> The first M elements contain the selected eigenvalues in
> ascending order.
> \endverbatim
>
> \param[out] Z
> \verbatim
> Z is DOUBLE PRECISION array, dimension (LDZ, max(1,M) )
> If JOBZ = 'V', and if INFO = 0, then the first M columns of Z
> contain the orthonormal eigenvectors of the matrix T
> corresponding to the selected eigenvalues, with the i-th
> column of Z holding the eigenvector associated with W(i).
> If JOBZ = 'N', then Z is not referenced.
> Note: the user must ensure that at least max(1,M) columns are
> supplied in the array Z; if RANGE = 'V', the exact value of M
> is not known in advance and can be computed with a workspace
> query by setting NZC = -1, see below.
> \endverbatim
>
> \param[in] LDZ
> \verbatim
> LDZ is INTEGER
> The leading dimension of the array Z. LDZ >= 1, and if
> JOBZ = 'V', then LDZ >= max(1,N).
> \endverbatim
>
> \param[in] NZC
> \verbatim
> NZC is INTEGER
> The number of eigenvectors to be held in the array Z.
> If RANGE = 'A', then NZC >= max(1,N).
> If RANGE = 'V', then NZC >= the number of eigenvalues in (VL,VU].
> If RANGE = 'I', then NZC >= IU-IL+1.
> If NZC = -1, then a workspace query is assumed; the
> routine calculates the number of columns of the array Z that
> are needed to hold the eigenvectors.
> This value is returned as the first entry of the Z array, and
> no error message related to NZC is issued by XERBLA.
> \endverbatim
>
> \param[out] ISUPPZ
> \verbatim
> ISUPPZ is INTEGER ARRAY, dimension ( 2*max(1,M) )
> The support of the eigenvectors in Z, i.e., the indices
> indicating the nonzero elements in Z. The i-th computed eigenvector
> is nonzero only in elements ISUPPZ( 2*i-1 ) through
> ISUPPZ( 2*i ). This is relevant in the case when the matrix
> is split. ISUPPZ is only accessed when JOBZ is 'V' and N > 0.
> \endverbatim
>
> \param[in,out] TRYRAC
> \verbatim
> TRYRAC is LOGICAL
> If TRYRAC.EQ..TRUE., indicates that the code should check whether
> the tridiagonal matrix defines its eigenvalues to high relative
> accuracy. If so, the code uses relative-accuracy preserving
> algorithms that might be (a bit) slower depending on the matrix.
> If the matrix does not define its eigenvalues to high relative
> accuracy, the code can uses possibly faster algorithms.
> If TRYRAC.EQ..FALSE., the code is not required to guarantee
> relatively accurate eigenvalues and can use the fastest possible
> techniques.
> On exit, a .TRUE. TRYRAC will be set to .FALSE. if the matrix
> does not define its eigenvalues to high relative accuracy.
> \endverbatim
>
> \param[out] WORK
> \verbatim
> WORK is DOUBLE PRECISION array, dimension (LWORK)
> On exit, if INFO = 0, WORK(1) returns the optimal
> (and minimal) LWORK.
> \endverbatim
>
> \param[in] LWORK
> \verbatim
> LWORK is INTEGER
> The dimension of the array WORK. LWORK >= max(1,18*N)
> if JOBZ = 'V', and LWORK >= max(1,12*N) if JOBZ = 'N'.
> If LWORK = -1, then a workspace query is assumed; the routine
> only calculates the optimal size of the WORK array, returns
> this value as the first entry of the WORK array, and no error
> message related to LWORK is issued by XERBLA.
> \endverbatim
>
> \param[out] IWORK
> \verbatim
> IWORK is INTEGER array, dimension (LIWORK)
> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
> \endverbatim
>
> \param[in] LIWORK
> \verbatim
> LIWORK is INTEGER
> The dimension of the array IWORK. LIWORK >= max(1,10*N)
> if the eigenvectors are desired, and LIWORK >= max(1,8*N)
> if only the eigenvalues are to be computed.
> If LIWORK = -1, then a workspace query is assumed; the
> routine only calculates the optimal size of the IWORK array,
> returns this value as the first entry of the IWORK array, and
> no error message related to LIWORK is issued by XERBLA.
> \endverbatim
>
> \param[out] INFO
> \verbatim
> INFO is INTEGER
> On exit, INFO
> = 0: successful exit
> < 0: if INFO = -i, the i-th argument had an illegal value
> > 0: if INFO = 1X, internal error in DLARRE,
> if INFO = 2X, internal error in DLARRV.
> Here, the digit X = ABS( IINFO ) < 10, where IINFO is
> the nonzero error code returned by DLARRE or
> DLARRV, respectively.
> \endverbatim
Authors:
========
> \author Univ. of Tennessee
> \author Univ. of California Berkeley
> \author Univ. of Colorado Denver
> \author NAG Ltd.
> \date November 2013
> \ingroup doubleOTHERcomputational
> \par Contributors:
==================
>
> Beresford Parlett, University of California, Berkeley, USA \n
> Jim Demmel, University of California, Berkeley, USA \n
> Inderjit Dhillon, University of Texas, Austin, USA \n
> Osni Marques, LBNL/NERSC, USA \n
> Christof Voemel, University of California, Berkeley, USA
=====================================================================
Subroutine */ int igraphdstemr_(char *jobz, char *range, integer *n, doublereal *
d__, doublereal *e, doublereal *vl, doublereal *vu, integer *il,
integer *iu, integer *m, doublereal *w, doublereal *z__, integer *ldz,
integer *nzc, integer *isuppz, logical *tryrac, doublereal *work,
integer *lwork, integer *iwork, integer *liwork, integer *info)
{
/* System generated locals */
integer z_dim1, z_offset, i__1, i__2;
doublereal d__1, d__2;
/* Builtin functions */
double sqrt(doublereal);
/* Local variables */
integer i__, j;
doublereal r1, r2;
integer jj;
doublereal cs;
integer in;
doublereal sn, wl, wu;
integer iil, iiu;
doublereal eps, tmp;
integer indd, iend, jblk, wend;
doublereal rmin, rmax;
integer itmp;
doublereal tnrm;
extern /* Subroutine */ int igraphdlae2_(doublereal *, doublereal *, doublereal
*, doublereal *, doublereal *);
integer inde2, itmp2;
doublereal rtol1, rtol2;
extern /* Subroutine */ int igraphdscal_(integer *, doublereal *, doublereal *,
integer *);
doublereal scale;
integer indgp;
extern logical igraphlsame_(char *, char *);
integer iinfo, iindw, ilast;
extern /* Subroutine */ int igraphdcopy_(integer *, doublereal *, integer *,
doublereal *, integer *), igraphdswap_(integer *, doublereal *, integer
*, doublereal *, integer *);
integer lwmin;
logical wantz;
extern /* Subroutine */ int igraphdlaev2_(doublereal *, doublereal *,
doublereal *, doublereal *, doublereal *, doublereal *,
doublereal *);
extern doublereal igraphdlamch_(char *);
logical alleig;
integer ibegin;
logical indeig;
integer iindbl;
logical valeig;
extern /* Subroutine */ int igraphdlarrc_(char *, integer *, doublereal *,
doublereal *, doublereal *, doublereal *, doublereal *, integer *,
integer *, integer *, integer *), igraphdlarre_(char *,
integer *, doublereal *, doublereal *, integer *, integer *,
doublereal *, doublereal *, doublereal *, doublereal *,
doublereal *, doublereal *, integer *, integer *, integer *,
doublereal *, doublereal *, doublereal *, integer *, integer *,
doublereal *, doublereal *, doublereal *, integer *, integer *);
integer wbegin;
doublereal safmin;
extern /* Subroutine */ int igraphdlarrj_(integer *, doublereal *, doublereal *,
integer *, integer *, doublereal *, integer *, doublereal *,
doublereal *, doublereal *, integer *, doublereal *, doublereal *,
integer *), igraphxerbla_(char *, integer *, ftnlen);
doublereal bignum;
integer inderr, iindwk, indgrs, offset;
extern doublereal igraphdlanst_(char *, integer *, doublereal *, doublereal *);
extern /* Subroutine */ int igraphdlarrr_(integer *, doublereal *, doublereal *,
integer *), igraphdlarrv_(integer *, doublereal *, doublereal *,
doublereal *, doublereal *, doublereal *, integer *, integer *,
integer *, integer *, doublereal *, doublereal *, doublereal *,
doublereal *, doublereal *, doublereal *, integer *, integer *,
doublereal *, doublereal *, integer *, integer *, doublereal *,
integer *, integer *), igraphdlasrt_(char *, integer *, doublereal *,
integer *);
doublereal thresh;
integer iinspl, ifirst, indwrk, liwmin, nzcmin;
doublereal pivmin;
integer nsplit;
doublereal smlnum;
logical lquery, zquery;
/* -- LAPACK computational routine (version 3.5.0) --
-- LAPACK is a software package provided by Univ. of Tennessee, --
-- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
November 2013
=====================================================================
Test the input parameters.
Parameter adjustments */
--d__;
--e;
--w;
z_dim1 = *ldz;
z_offset = 1 + z_dim1;
z__ -= z_offset;
--isuppz;
--work;
--iwork;
/* Function Body */
wantz = igraphlsame_(jobz, "V");
alleig = igraphlsame_(range, "A");
valeig = igraphlsame_(range, "V");
indeig = igraphlsame_(range, "I");
lquery = *lwork == -1 || *liwork == -1;
zquery = *nzc == -1;
/* DSTEMR needs WORK of size 6*N, IWORK of size 3*N.
In addition, DLARRE needs WORK of size 6*N, IWORK of size 5*N.
Furthermore, DLARRV needs WORK of size 12*N, IWORK of size 7*N. */
if (wantz) {
lwmin = *n * 18;
liwmin = *n * 10;
} else {
/* need less workspace if only the eigenvalues are wanted */
lwmin = *n * 12;
liwmin = *n << 3;
}
wl = 0.;
wu = 0.;
iil = 0;
iiu = 0;
nsplit = 0;
if (valeig) {
/* We do not reference VL, VU in the cases RANGE = 'I','A'
The interval (WL, WU] contains all the wanted eigenvalues.
It is either given by the user or computed in DLARRE. */
wl = *vl;
wu = *vu;
} else if (indeig) {
/* We do not reference IL, IU in the cases RANGE = 'V','A' */
iil = *il;
iiu = *iu;
}
*info = 0;
if (! (wantz || igraphlsame_(jobz, "N"))) {
*info = -1;
} else if (! (alleig || valeig || indeig)) {
*info = -2;
} else if (*n < 0) {
*info = -3;
} else if (valeig && *n > 0 && wu <= wl) {
*info = -7;
} else if (indeig && (iil < 1 || iil > *n)) {
*info = -8;
} else if (indeig && (iiu < iil || iiu > *n)) {
*info = -9;
} else if (*ldz < 1 || wantz && *ldz < *n) {
*info = -13;
} else if (*lwork < lwmin && ! lquery) {
*info = -17;
} else if (*liwork < liwmin && ! lquery) {
*info = -19;
}
/* Get machine constants. */
safmin = igraphdlamch_("Safe minimum");
eps = igraphdlamch_("Precision");
smlnum = safmin / eps;
bignum = 1. / smlnum;
rmin = sqrt(smlnum);
/* Computing MIN */
d__1 = sqrt(bignum), d__2 = 1. / sqrt(sqrt(safmin));
rmax = min(d__1,d__2);
if (*info == 0) {
work[1] = (doublereal) lwmin;
iwork[1] = liwmin;
if (wantz && alleig) {
nzcmin = *n;
} else if (wantz && valeig) {
igraphdlarrc_("T", n, vl, vu, &d__[1], &e[1], &safmin, &nzcmin, &itmp, &
itmp2, info);
} else if (wantz && indeig) {
nzcmin = iiu - iil + 1;
} else {
/* WANTZ .EQ. FALSE. */
nzcmin = 0;
}
if (zquery && *info == 0) {
z__[z_dim1 + 1] = (doublereal) nzcmin;
} else if (*nzc < nzcmin && ! zquery) {
*info = -14;
}
}
if (*info != 0) {
i__1 = -(*info);
igraphxerbla_("DSTEMR", &i__1, (ftnlen)6);
return 0;
} else if (lquery || zquery) {
return 0;
}
/* Handle N = 0, 1, and 2 cases immediately */
*m = 0;
if (*n == 0) {
return 0;
}
if (*n == 1) {
if (alleig || indeig) {
*m = 1;
w[1] = d__[1];
} else {
if (wl < d__[1] && wu >= d__[1]) {
*m = 1;
w[1] = d__[1];
}
}
if (wantz && ! zquery) {
z__[z_dim1 + 1] = 1.;
isuppz[1] = 1;
isuppz[2] = 1;
}
return 0;
}
if (*n == 2) {
if (! wantz) {
igraphdlae2_(&d__[1], &e[1], &d__[2], &r1, &r2);
} else if (wantz && ! zquery) {
igraphdlaev2_(&d__[1], &e[1], &d__[2], &r1, &r2, &cs, &sn);
}
if (alleig || valeig && r2 > wl && r2 <= wu || indeig && iil == 1) {
++(*m);
w[*m] = r2;
if (wantz && ! zquery) {
z__[*m * z_dim1 + 1] = -sn;
z__[*m * z_dim1 + 2] = cs;
/* Note: At most one of SN and CS can be zero. */
if (sn != 0.) {
if (cs != 0.) {
isuppz[(*m << 1) - 1] = 1;
isuppz[*m * 2] = 2;
} else {
isuppz[(*m << 1) - 1] = 1;
isuppz[*m * 2] = 1;
}
} else {
isuppz[(*m << 1) - 1] = 2;
isuppz[*m * 2] = 2;
}
}
}
if (alleig || valeig && r1 > wl && r1 <= wu || indeig && iiu == 2) {
++(*m);
w[*m] = r1;
if (wantz && ! zquery) {
z__[*m * z_dim1 + 1] = cs;
z__[*m * z_dim1 + 2] = sn;
/* Note: At most one of SN and CS can be zero. */
if (sn != 0.) {
if (cs != 0.) {
isuppz[(*m << 1) - 1] = 1;
isuppz[*m * 2] = 2;
} else {
isuppz[(*m << 1) - 1] = 1;
isuppz[*m * 2] = 1;
}
} else {
isuppz[(*m << 1) - 1] = 2;
isuppz[*m * 2] = 2;
}
}
}
} else {
/* Continue with general N */
indgrs = 1;
inderr = (*n << 1) + 1;
indgp = *n * 3 + 1;
indd = (*n << 2) + 1;
inde2 = *n * 5 + 1;
indwrk = *n * 6 + 1;
iinspl = 1;
iindbl = *n + 1;
iindw = (*n << 1) + 1;
iindwk = *n * 3 + 1;
/* Scale matrix to allowable range, if necessary.
The allowable range is related to the PIVMIN parameter; see the
comments in DLARRD. The preference for scaling small values
up is heuristic; we expect users' matrices not to be close to the
RMAX threshold. */
scale = 1.;
tnrm = igraphdlanst_("M", n, &d__[1], &e[1]);
if (tnrm > 0. && tnrm < rmin) {
scale = rmin / tnrm;
} else if (tnrm > rmax) {
scale = rmax / tnrm;
}
if (scale != 1.) {
igraphdscal_(n, &scale, &d__[1], &c__1);
i__1 = *n - 1;
igraphdscal_(&i__1, &scale, &e[1], &c__1);
tnrm *= scale;
if (valeig) {
/* If eigenvalues in interval have to be found,
scale (WL, WU] accordingly */
wl *= scale;
wu *= scale;
}
}
/* Compute the desired eigenvalues of the tridiagonal after splitting
into smaller subblocks if the corresponding off-diagonal elements
are small
THRESH is the splitting parameter for DLARRE
A negative THRESH forces the old splitting criterion based on the
size of the off-diagonal. A positive THRESH switches to splitting
which preserves relative accuracy. */
if (*tryrac) {
/* Test whether the matrix warrants the more expensive relative approach. */
igraphdlarrr_(n, &d__[1], &e[1], &iinfo);
} else {
/* The user does not care about relative accurately eigenvalues */
iinfo = -1;
}
/* Set the splitting criterion */
if (iinfo == 0) {
thresh = eps;
} else {
thresh = -eps;
/* relative accuracy is desired but T does not guarantee it */
*tryrac = FALSE_;
}
if (*tryrac) {
/* Copy original diagonal, needed to guarantee relative accuracy */
igraphdcopy_(n, &d__[1], &c__1, &work[indd], &c__1);
}
/* Store the squares of the offdiagonal values of T */
i__1 = *n - 1;
for (j = 1; j <= i__1; ++j) {
/* Computing 2nd power */
d__1 = e[j];
work[inde2 + j - 1] = d__1 * d__1;
/* L5: */
}
/* Set the tolerance parameters for bisection */
if (! wantz) {
/* DLARRE computes the eigenvalues to full precision. */
rtol1 = eps * 4.;
rtol2 = eps * 4.;
} else {
/* DLARRE computes the eigenvalues to less than full precision.
DLARRV will refine the eigenvalue approximations, and we can
need less accurate initial bisection in DLARRE.
Note: these settings do only affect the subset case and DLARRE */
rtol1 = sqrt(eps);
/* Computing MAX */
d__1 = sqrt(eps) * .005, d__2 = eps * 4.;
rtol2 = max(d__1,d__2);
}
igraphdlarre_(range, n, &wl, &wu, &iil, &iiu, &d__[1], &e[1], &work[inde2],
&rtol1, &rtol2, &thresh, &nsplit, &iwork[iinspl], m, &w[1], &
work[inderr], &work[indgp], &iwork[iindbl], &iwork[iindw], &
work[indgrs], &pivmin, &work[indwrk], &iwork[iindwk], &iinfo);
if (iinfo != 0) {
*info = abs(iinfo) + 10;
return 0;
}
/* Note that if RANGE .NE. 'V', DLARRE computes bounds on the desired
part of the spectrum. All desired eigenvalues are contained in
(WL,WU] */
if (wantz) {
/* Compute the desired eigenvectors corresponding to the computed
eigenvalues */
igraphdlarrv_(n, &wl, &wu, &d__[1], &e[1], &pivmin, &iwork[iinspl], m, &
c__1, m, &c_b18, &rtol1, &rtol2, &w[1], &work[inderr], &
work[indgp], &iwork[iindbl], &iwork[iindw], &work[indgrs],
&z__[z_offset], ldz, &isuppz[1], &work[indwrk], &iwork[
iindwk], &iinfo);
if (iinfo != 0) {
*info = abs(iinfo) + 20;
return 0;
}
} else {
/* DLARRE computes eigenvalues of the (shifted) root representation
DLARRV returns the eigenvalues of the unshifted matrix.
However, if the eigenvectors are not desired by the user, we need
to apply the corresponding shifts from DLARRE to obtain the
eigenvalues of the original matrix. */
i__1 = *m;
for (j = 1; j <= i__1; ++j) {
itmp = iwork[iindbl + j - 1];
w[j] += e[iwork[iinspl + itmp - 1]];
/* L20: */
}
}
if (*tryrac) {
/* Refine computed eigenvalues so that they are relatively accurate
with respect to the original matrix T. */
ibegin = 1;
wbegin = 1;
i__1 = iwork[iindbl + *m - 1];
for (jblk = 1; jblk <= i__1; ++jblk) {
iend = iwork[iinspl + jblk - 1];
in = iend - ibegin + 1;
wend = wbegin - 1;
/* check if any eigenvalues have to be refined in this block */
L36:
if (wend < *m) {
if (iwork[iindbl + wend] == jblk) {
++wend;
goto L36;
}
}
if (wend < wbegin) {
ibegin = iend + 1;
goto L39;
}
offset = iwork[iindw + wbegin - 1] - 1;
ifirst = iwork[iindw + wbegin - 1];
ilast = iwork[iindw + wend - 1];
rtol2 = eps * 4.;
igraphdlarrj_(&in, &work[indd + ibegin - 1], &work[inde2 + ibegin -
1], &ifirst, &ilast, &rtol2, &offset, &w[wbegin], &
work[inderr + wbegin - 1], &work[indwrk], &iwork[
iindwk], &pivmin, &tnrm, &iinfo);
ibegin = iend + 1;
wbegin = wend + 1;
L39:
;
}
}
/* If matrix was scaled, then rescale eigenvalues appropriately. */
if (scale != 1.) {
d__1 = 1. / scale;
igraphdscal_(m, &d__1, &w[1], &c__1);
}
}
/* If eigenvalues are not in increasing order, then sort them,
possibly along with eigenvectors. */
if (nsplit > 1 || *n == 2) {
if (! wantz) {
igraphdlasrt_("I", m, &w[1], &iinfo);
if (iinfo != 0) {
*info = 3;
return 0;
}
} else {
i__1 = *m - 1;
for (j = 1; j <= i__1; ++j) {
i__ = 0;
tmp = w[j];
i__2 = *m;
for (jj = j + 1; jj <= i__2; ++jj) {
if (w[jj] < tmp) {
i__ = jj;
tmp = w[jj];
}
/* L50: */
}
if (i__ != 0) {
w[i__] = w[j];
w[j] = tmp;
if (wantz) {
igraphdswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j *
z_dim1 + 1], &c__1);
itmp = isuppz[(i__ << 1) - 1];
isuppz[(i__ << 1) - 1] = isuppz[(j << 1) - 1];
isuppz[(j << 1) - 1] = itmp;
itmp = isuppz[i__ * 2];
isuppz[i__ * 2] = isuppz[j * 2];
isuppz[j * 2] = itmp;
}
}
/* L60: */
}
}
}
work[1] = (doublereal) lwmin;
iwork[1] = liwmin;
return 0;
/* End of DSTEMR */
} /* igraphdstemr_ */