/* -- translated by f2c (version 20191129). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Table of constant values */ static integer c__10 = 10; static integer c__1 = 1; static integer c__2 = 2; static integer c__3 = 3; static integer c__4 = 4; static integer c_n1 = -1; /* > \brief DSYEVR computes the eigenvalues and, optionally, the left and/or right eigenvectors for SY mat rices =========== DOCUMENTATION =========== Online html documentation available at http://www.netlib.org/lapack/explore-html/ > \htmlonly > Download DSYEVR + dependencies > > [TGZ] > > [ZIP] > > [TXT] > \endhtmlonly Definition: =========== SUBROUTINE DSYEVR( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK, LIWORK, INFO ) CHARACTER JOBZ, RANGE, UPLO INTEGER IL, INFO, IU, LDA, LDZ, LIWORK, LWORK, M, N DOUBLE PRECISION ABSTOL, VL, VU INTEGER ISUPPZ( * ), IWORK( * ) DOUBLE PRECISION A( LDA, * ), W( * ), WORK( * ), Z( LDZ, * ) > \par Purpose: ============= > > \verbatim > > DSYEVR computes selected eigenvalues and, optionally, eigenvectors > of a real symmetric matrix A. Eigenvalues and eigenvectors can be > selected by specifying either a range of values or a range of > indices for the desired eigenvalues. > > DSYEVR first reduces the matrix A to tridiagonal form T with a call > to DSYTRD. Then, whenever possible, DSYEVR calls DSTEMR to compute > the eigenspectrum using Relatively Robust Representations. DSTEMR > computes eigenvalues by the dqds algorithm, while orthogonal > eigenvectors are computed from various "good" L D L^T representations > (also known as Relatively Robust Representations). Gram-Schmidt > orthogonalization is avoided as far as possible. More specifically, > the various steps of the algorithm are as follows. > > For each unreduced block (submatrix) of T, > (a) Compute T - sigma I = L D L^T, so that L and D > define all the wanted eigenvalues to high relative accuracy. > This means that small relative changes in the entries of D and L > cause only small relative changes in the eigenvalues and > eigenvectors. The standard (unfactored) representation of the > tridiagonal matrix T does not have this property in general. > (b) Compute the eigenvalues to suitable accuracy. > If the eigenvectors are desired, the algorithm attains full > accuracy of the computed eigenvalues only right before > the corresponding vectors have to be computed, see steps c) and d). > (c) For each cluster of close eigenvalues, select a new > shift close to the cluster, find a new factorization, and refine > the shifted eigenvalues to suitable accuracy. > (d) For each eigenvalue with a large enough relative separation compute > the corresponding eigenvector by forming a rank revealing twisted > factorization. Go back to (c) for any clusters that remain. > > The desired accuracy of the output can be specified by the input > parameter ABSTOL. > > For more details, see DSTEMR's documentation and: > - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations > to compute orthogonal eigenvectors of symmetric tridiagonal matrices," > Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004. > - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and > Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25, > 2004. Also LAPACK Working Note 154. > - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric > tridiagonal eigenvalue/eigenvector problem", > Computer Science Division Technical Report No. UCB/CSD-97-971, > UC Berkeley, May 1997. > > > Note 1 : DSYEVR calls DSTEMR when the full spectrum is requested > on machines which conform to the ieee-754 floating point standard. > DSYEVR calls DSTEBZ and SSTEIN on non-ieee machines and > when partial spectrum requests are made. > > Normal execution of DSTEMR may create NaNs and infinities and > hence may abort due to a floating point exception in environments > which do not handle NaNs and infinities in the ieee standard default > manner. > \endverbatim Arguments: ========== > \param[in] JOBZ > \verbatim > JOBZ is CHARACTER*1 > = 'N': Compute eigenvalues only; > = 'V': Compute eigenvalues and eigenvectors. > \endverbatim > > \param[in] RANGE > \verbatim > RANGE is CHARACTER*1 > = 'A': all eigenvalues will be found. > = 'V': all eigenvalues in the half-open interval (VL,VU] > will be found. > = 'I': the IL-th through IU-th eigenvalues will be found. > For RANGE = 'V' or 'I' and IU - IL < N - 1, DSTEBZ and > DSTEIN are called > \endverbatim > > \param[in] UPLO > \verbatim > UPLO is CHARACTER*1 > = 'U': Upper triangle of A is stored; > = 'L': Lower triangle of A is stored. > \endverbatim > > \param[in] N > \verbatim > N is INTEGER > The order of the matrix A. N >= 0. > \endverbatim > > \param[in,out] A > \verbatim > A is DOUBLE PRECISION array, dimension (LDA, N) > On entry, the symmetric matrix A. If UPLO = 'U', the > leading N-by-N upper triangular part of A contains the > upper triangular part of the matrix A. If UPLO = 'L', > the leading N-by-N lower triangular part of A contains > the lower triangular part of the matrix A. > On exit, the lower triangle (if UPLO='L') or the upper > triangle (if UPLO='U') of A, including the diagonal, is > destroyed. > \endverbatim > > \param[in] LDA > \verbatim > LDA is INTEGER > The leading dimension of the array A. LDA >= max(1,N). > \endverbatim > > \param[in] VL > \verbatim > VL is DOUBLE PRECISION > \endverbatim > > \param[in] VU > \verbatim > VU is DOUBLE PRECISION > If RANGE='V', the lower and upper bounds of the interval to > be searched for eigenvalues. VL < VU. > Not referenced if RANGE = 'A' or 'I'. > \endverbatim > > \param[in] IL > \verbatim > IL is INTEGER > \endverbatim > > \param[in] IU > \verbatim > IU is INTEGER > If RANGE='I', the indices (in ascending order) of the > smallest and largest eigenvalues to be returned. > 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. > Not referenced if RANGE = 'A' or 'V'. > \endverbatim > > \param[in] ABSTOL > \verbatim > ABSTOL is DOUBLE PRECISION > The absolute error tolerance for the eigenvalues. > An approximate eigenvalue is accepted as converged > when it is determined to lie in an interval [a,b] > of width less than or equal to > > ABSTOL + EPS * max( |a|,|b| ) , > > where EPS is the machine precision. If ABSTOL is less than > or equal to zero, then EPS*|T| will be used in its place, > where |T| is the 1-norm of the tridiagonal matrix obtained > by reducing A to tridiagonal form. > > See "Computing Small Singular Values of Bidiagonal Matrices > with Guaranteed High Relative Accuracy," by Demmel and > Kahan, LAPACK Working Note #3. > > If high relative accuracy is important, set ABSTOL to > DLAMCH( 'Safe minimum' ). Doing so will guarantee that > eigenvalues are computed to high relative accuracy when > possible in future releases. The current code does not > make any guarantees about high relative accuracy, but > future releases will. See J. Barlow and J. Demmel, > "Computing Accurate Eigensystems of Scaled Diagonally > Dominant Matrices", LAPACK Working Note #7, for a discussion > of which matrices define their eigenvalues to high relative > accuracy. > \endverbatim > > \param[out] M > \verbatim > M is INTEGER > The total number of eigenvalues found. 0 <= M <= N. > If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. > \endverbatim > > \param[out] W > \verbatim > W is DOUBLE PRECISION array, dimension (N) > The first M elements contain the selected eigenvalues in > ascending order. > \endverbatim > > \param[out] Z > \verbatim > Z is DOUBLE PRECISION array, dimension (LDZ, max(1,M)) > If JOBZ = 'V', then if INFO = 0, the first M columns of Z > contain the orthonormal eigenvectors of the matrix A > corresponding to the selected eigenvalues, with the i-th > column of Z holding the eigenvector associated with W(i). > If JOBZ = 'N', then Z is not referenced. > Note: the user must ensure that at least max(1,M) columns are > supplied in the array Z; if RANGE = 'V', the exact value of M > is not known in advance and an upper bound must be used. > Supplying N columns is always safe. > \endverbatim > > \param[in] LDZ > \verbatim > LDZ is INTEGER > The leading dimension of the array Z. LDZ >= 1, and if > JOBZ = 'V', LDZ >= max(1,N). > \endverbatim > > \param[out] ISUPPZ > \verbatim > ISUPPZ is INTEGER array, dimension ( 2*max(1,M) ) > The support of the eigenvectors in Z, i.e., the indices > indicating the nonzero elements in Z. The i-th eigenvector > is nonzero only in elements ISUPPZ( 2*i-1 ) through > ISUPPZ( 2*i ). > Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1 > \endverbatim > > \param[out] WORK > \verbatim > WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. > \endverbatim > > \param[in] LWORK > \verbatim > LWORK is INTEGER > The dimension of the array WORK. LWORK >= max(1,26*N). > For optimal efficiency, LWORK >= (NB+6)*N, > where NB is the max of the blocksize for DSYTRD and DORMTR > returned by ILAENV. > > If LWORK = -1, then a workspace query is assumed; the routine > only calculates the optimal size of the WORK array, returns > this value as the first entry of the WORK array, and no error > message related to LWORK is issued by XERBLA. > \endverbatim > > \param[out] IWORK > \verbatim > IWORK is INTEGER array, dimension (MAX(1,LIWORK)) > On exit, if INFO = 0, IWORK(1) returns the optimal LWORK. > \endverbatim > > \param[in] LIWORK > \verbatim > LIWORK is INTEGER > The dimension of the array IWORK. LIWORK >= max(1,10*N). > > If LIWORK = -1, then a workspace query is assumed; the > routine only calculates the optimal size of the IWORK array, > returns this value as the first entry of the IWORK array, and > no error message related to LIWORK is issued by XERBLA. > \endverbatim > > \param[out] INFO > \verbatim > INFO is INTEGER > = 0: successful exit > < 0: if INFO = -i, the i-th argument had an illegal value > > 0: Internal error > \endverbatim Authors: ======== > \author Univ. of Tennessee > \author Univ. of California Berkeley > \author Univ. of Colorado Denver > \author NAG Ltd. > \date September 2012 > \ingroup doubleSYeigen > \par Contributors: ================== > > Inderjit Dhillon, IBM Almaden, USA \n > Osni Marques, LBNL/NERSC, USA \n > Ken Stanley, Computer Science Division, University of > California at Berkeley, USA \n > Jason Riedy, Computer Science Division, University of > California at Berkeley, USA \n > ===================================================================== Subroutine */ int igraphdsyevr_(char *jobz, char *range, char *uplo, integer *n, doublereal *a, integer *lda, doublereal *vl, doublereal *vu, integer * il, integer *iu, doublereal *abstol, integer *m, doublereal *w, doublereal *z__, integer *ldz, integer *isuppz, doublereal *work, integer *lwork, integer *iwork, integer *liwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, z_dim1, z_offset, i__1, i__2; doublereal d__1, d__2; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ integer i__, j, nb, jj; doublereal eps, vll, vuu, tmp1; integer indd, inde; doublereal anrm; integer imax; doublereal rmin, rmax; integer inddd, indee; extern /* Subroutine */ int igraphdscal_(integer *, doublereal *, doublereal *, integer *); doublereal sigma; extern logical igraphlsame_(char *, char *); integer iinfo; char order[1]; integer indwk; extern /* Subroutine */ int igraphdcopy_(integer *, doublereal *, integer *, doublereal *, integer *), igraphdswap_(integer *, doublereal *, integer *, doublereal *, integer *); integer lwmin; logical lower, wantz; extern doublereal igraphdlamch_(char *); logical alleig, indeig; integer iscale, ieeeok, indibl, indifl; logical valeig; doublereal safmin; extern integer igraphilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *, ftnlen, ftnlen); extern /* Subroutine */ int igraphxerbla_(char *, integer *, ftnlen); doublereal abstll, bignum; integer indtau, indisp; extern /* Subroutine */ int igraphdstein_(integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, integer *, integer *), igraphdsterf_(integer *, doublereal *, doublereal *, integer *); integer indiwo, indwkn; extern doublereal igraphdlansy_(char *, char *, integer *, doublereal *, integer *, doublereal *); extern /* Subroutine */ int igraphdstebz_(char *, char *, integer *, doublereal *, doublereal *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *, integer *, doublereal *, integer *, integer *, doublereal *, integer *, integer *), igraphdstemr_(char *, char *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, integer *, integer *, integer *, doublereal *, doublereal *, integer *, integer *, integer *, logical *, doublereal *, integer *, integer *, integer *, integer *); integer liwmin; logical tryrac; extern /* Subroutine */ int igraphdormtr_(char *, char *, char *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, integer *); integer llwrkn, llwork, nsplit; doublereal smlnum; extern /* Subroutine */ int igraphdsytrd_(char *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, integer *, integer *); integer lwkopt; logical lquery; /* -- LAPACK driver routine (version 3.4.2) -- -- LAPACK is a software package provided by Univ. of Tennessee, -- -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- September 2012 ===================================================================== Test the input parameters. Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --w; z_dim1 = *ldz; z_offset = 1 + z_dim1; z__ -= z_offset; --isuppz; --work; --iwork; /* Function Body */ ieeeok = igraphilaenv_(&c__10, "DSYEVR", "N", &c__1, &c__2, &c__3, &c__4, ( ftnlen)6, (ftnlen)1); lower = igraphlsame_(uplo, "L"); wantz = igraphlsame_(jobz, "V"); alleig = igraphlsame_(range, "A"); valeig = igraphlsame_(range, "V"); indeig = igraphlsame_(range, "I"); lquery = *lwork == -1 || *liwork == -1; /* Computing MAX */ i__1 = 1, i__2 = *n * 26; lwmin = max(i__1,i__2); /* Computing MAX */ i__1 = 1, i__2 = *n * 10; liwmin = max(i__1,i__2); *info = 0; if (! (wantz || igraphlsame_(jobz, "N"))) { *info = -1; } else if (! (alleig || valeig || indeig)) { *info = -2; } else if (! (lower || igraphlsame_(uplo, "U"))) { *info = -3; } else if (*n < 0) { *info = -4; } else if (*lda < max(1,*n)) { *info = -6; } else { if (valeig) { if (*n > 0 && *vu <= *vl) { *info = -8; } } else if (indeig) { if (*il < 1 || *il > max(1,*n)) { *info = -9; } else if (*iu < min(*n,*il) || *iu > *n) { *info = -10; } } } if (*info == 0) { if (*ldz < 1 || wantz && *ldz < *n) { *info = -15; } else if (*lwork < lwmin && ! lquery) { *info = -18; } else if (*liwork < liwmin && ! lquery) { *info = -20; } } if (*info == 0) { nb = igraphilaenv_(&c__1, "DSYTRD", uplo, n, &c_n1, &c_n1, &c_n1, (ftnlen)6, (ftnlen)1); /* Computing MAX */ i__1 = nb, i__2 = igraphilaenv_(&c__1, "DORMTR", uplo, n, &c_n1, &c_n1, & c_n1, (ftnlen)6, (ftnlen)1); nb = max(i__1,i__2); /* Computing MAX */ i__1 = (nb + 1) * *n; lwkopt = max(i__1,lwmin); work[1] = (doublereal) lwkopt; iwork[1] = liwmin; } if (*info != 0) { i__1 = -(*info); igraphxerbla_("DSYEVR", &i__1, (ftnlen)6); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ *m = 0; if (*n == 0) { work[1] = 1.; return 0; } if (*n == 1) { work[1] = 7.; if (alleig || indeig) { *m = 1; w[1] = a[a_dim1 + 1]; } else { if (*vl < a[a_dim1 + 1] && *vu >= a[a_dim1 + 1]) { *m = 1; w[1] = a[a_dim1 + 1]; } } if (wantz) { z__[z_dim1 + 1] = 1.; isuppz[1] = 1; isuppz[2] = 1; } return 0; } /* Get machine constants. */ safmin = igraphdlamch_("Safe minimum"); eps = igraphdlamch_("Precision"); smlnum = safmin / eps; bignum = 1. / smlnum; rmin = sqrt(smlnum); /* Computing MIN */ d__1 = sqrt(bignum), d__2 = 1. / sqrt(sqrt(safmin)); rmax = min(d__1,d__2); /* Scale matrix to allowable range, if necessary. */ iscale = 0; abstll = *abstol; if (valeig) { vll = *vl; vuu = *vu; } anrm = igraphdlansy_("M", uplo, n, &a[a_offset], lda, &work[1]); if (anrm > 0. && anrm < rmin) { iscale = 1; sigma = rmin / anrm; } else if (anrm > rmax) { iscale = 1; sigma = rmax / anrm; } if (iscale == 1) { if (lower) { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *n - j + 1; igraphdscal_(&i__2, &sigma, &a[j + j * a_dim1], &c__1); /* L10: */ } } else { i__1 = *n; for (j = 1; j <= i__1; ++j) { igraphdscal_(&j, &sigma, &a[j * a_dim1 + 1], &c__1); /* L20: */ } } if (*abstol > 0.) { abstll = *abstol * sigma; } if (valeig) { vll = *vl * sigma; vuu = *vu * sigma; } } /* Initialize indices into workspaces. Note: The IWORK indices are used only if DSTERF or DSTEMR fail. WORK(INDTAU:INDTAU+N-1) stores the scalar factors of the elementary reflectors used in DSYTRD. */ indtau = 1; /* WORK(INDD:INDD+N-1) stores the tridiagonal's diagonal entries. */ indd = indtau + *n; /* WORK(INDE:INDE+N-1) stores the off-diagonal entries of the tridiagonal matrix from DSYTRD. */ inde = indd + *n; /* WORK(INDDD:INDDD+N-1) is a copy of the diagonal entries over -written by DSTEMR (the DSTERF path copies the diagonal to W). */ inddd = inde + *n; /* WORK(INDEE:INDEE+N-1) is a copy of the off-diagonal entries over -written while computing the eigenvalues in DSTERF and DSTEMR. */ indee = inddd + *n; /* INDWK is the starting offset of the left-over workspace, and LLWORK is the remaining workspace size. */ indwk = indee + *n; llwork = *lwork - indwk + 1; /* IWORK(INDIBL:INDIBL+M-1) corresponds to IBLOCK in DSTEBZ and stores the block indices of each of the M<=N eigenvalues. */ indibl = 1; /* IWORK(INDISP:INDISP+NSPLIT-1) corresponds to ISPLIT in DSTEBZ and stores the starting and finishing indices of each block. */ indisp = indibl + *n; /* IWORK(INDIFL:INDIFL+N-1) stores the indices of eigenvectors that corresponding to eigenvectors that fail to converge in DSTEIN. This information is discarded; if any fail, the driver returns INFO > 0. */ indifl = indisp + *n; /* INDIWO is the offset of the remaining integer workspace. */ indiwo = indifl + *n; /* Call DSYTRD to reduce symmetric matrix to tridiagonal form. */ igraphdsytrd_(uplo, n, &a[a_offset], lda, &work[indd], &work[inde], &work[ indtau], &work[indwk], &llwork, &iinfo); /* If all eigenvalues are desired then call DSTERF or DSTEMR and DORMTR. */ if ((alleig || indeig && *il == 1 && *iu == *n) && ieeeok == 1) { if (! wantz) { igraphdcopy_(n, &work[indd], &c__1, &w[1], &c__1); i__1 = *n - 1; igraphdcopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1); igraphdsterf_(n, &w[1], &work[indee], info); } else { i__1 = *n - 1; igraphdcopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1); igraphdcopy_(n, &work[indd], &c__1, &work[inddd], &c__1); if (*abstol <= *n * 2. * eps) { tryrac = TRUE_; } else { tryrac = FALSE_; } igraphdstemr_(jobz, "A", n, &work[inddd], &work[indee], vl, vu, il, iu, m, &w[1], &z__[z_offset], ldz, n, &isuppz[1], &tryrac, & work[indwk], lwork, &iwork[1], liwork, info); /* Apply orthogonal matrix used in reduction to tridiagonal form to eigenvectors returned by DSTEIN. */ if (wantz && *info == 0) { indwkn = inde; llwrkn = *lwork - indwkn + 1; igraphdormtr_("L", uplo, "N", n, m, &a[a_offset], lda, &work[indtau] , &z__[z_offset], ldz, &work[indwkn], &llwrkn, &iinfo); } } if (*info == 0) { /* Everything worked. Skip DSTEBZ/DSTEIN. IWORK(:) are undefined. */ *m = *n; goto L30; } *info = 0; } /* Otherwise, call DSTEBZ and, if eigenvectors are desired, DSTEIN. Also call DSTEBZ and DSTEIN if DSTEMR fails. */ if (wantz) { *(unsigned char *)order = 'B'; } else { *(unsigned char *)order = 'E'; } igraphdstebz_(range, order, n, &vll, &vuu, il, iu, &abstll, &work[indd], &work[ inde], m, &nsplit, &w[1], &iwork[indibl], &iwork[indisp], &work[ indwk], &iwork[indiwo], info); if (wantz) { igraphdstein_(n, &work[indd], &work[inde], m, &w[1], &iwork[indibl], &iwork[ indisp], &z__[z_offset], ldz, &work[indwk], &iwork[indiwo], & iwork[indifl], info); /* Apply orthogonal matrix used in reduction to tridiagonal form to eigenvectors returned by DSTEIN. */ indwkn = inde; llwrkn = *lwork - indwkn + 1; igraphdormtr_("L", uplo, "N", n, m, &a[a_offset], lda, &work[indtau], &z__[ z_offset], ldz, &work[indwkn], &llwrkn, &iinfo); } /* If matrix was scaled, then rescale eigenvalues appropriately. Jump here if DSTEMR/DSTEIN succeeded. */ L30: if (iscale == 1) { if (*info == 0) { imax = *m; } else { imax = *info - 1; } d__1 = 1. / sigma; igraphdscal_(&imax, &d__1, &w[1], &c__1); } /* If eigenvalues are not in order, then sort them, along with eigenvectors. Note: We do not sort the IFAIL portion of IWORK. It may not be initialized (if DSTEMR/DSTEIN succeeded), and we do not return this detailed information to the user. */ if (wantz) { i__1 = *m - 1; for (j = 1; j <= i__1; ++j) { i__ = 0; tmp1 = w[j]; i__2 = *m; for (jj = j + 1; jj <= i__2; ++jj) { if (w[jj] < tmp1) { i__ = jj; tmp1 = w[jj]; } /* L40: */ } if (i__ != 0) { w[i__] = w[j]; w[j] = tmp1; igraphdswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1], &c__1); } /* L50: */ } } /* Set WORK(1) to optimal workspace size. */ work[1] = (doublereal) lwkopt; iwork[1] = liwmin; return 0; /* End of DSYEVR */ } /* igraphdsyevr_ */