/* -- translated by f2c (version 20191129). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Table of constant values */ static integer c__1 = 1; static integer c_n1 = -1; static integer c__3 = 3; static integer c__2 = 2; static doublereal c_b22 = -1.; static doublereal c_b23 = 1.; /* > \brief \b DSYTRD =========== DOCUMENTATION =========== Online html documentation available at http://www.netlib.org/lapack/explore-html/ > \htmlonly > Download DSYTRD + dependencies > > [TGZ] > > [ZIP] > > [TXT] > \endhtmlonly Definition: =========== SUBROUTINE DSYTRD( UPLO, N, A, LDA, D, E, TAU, WORK, LWORK, INFO ) CHARACTER UPLO INTEGER INFO, LDA, LWORK, N DOUBLE PRECISION A( LDA, * ), D( * ), E( * ), TAU( * ), $ WORK( * ) > \par Purpose: ============= > > \verbatim > > DSYTRD reduces a real symmetric matrix A to real symmetric > tridiagonal form T by an orthogonal similarity transformation: > Q**T * A * Q = T. > \endverbatim Arguments: ========== > \param[in] UPLO > \verbatim > UPLO is CHARACTER*1 > = 'U': Upper triangle of A is stored; > = 'L': Lower triangle of A is stored. > \endverbatim > > \param[in] N > \verbatim > N is INTEGER > The order of the matrix A. N >= 0. > \endverbatim > > \param[in,out] A > \verbatim > A is DOUBLE PRECISION array, dimension (LDA,N) > On entry, the symmetric matrix A. If UPLO = 'U', the leading > N-by-N upper triangular part of A contains the upper > triangular part of the matrix A, and the strictly lower > triangular part of A is not referenced. If UPLO = 'L', the > leading N-by-N lower triangular part of A contains the lower > triangular part of the matrix A, and the strictly upper > triangular part of A is not referenced. > On exit, if UPLO = 'U', the diagonal and first superdiagonal > of A are overwritten by the corresponding elements of the > tridiagonal matrix T, and the elements above the first > superdiagonal, with the array TAU, represent the orthogonal > matrix Q as a product of elementary reflectors; if UPLO > = 'L', the diagonal and first subdiagonal of A are over- > written by the corresponding elements of the tridiagonal > matrix T, and the elements below the first subdiagonal, with > the array TAU, represent the orthogonal matrix Q as a product > of elementary reflectors. See Further Details. > \endverbatim > > \param[in] LDA > \verbatim > LDA is INTEGER > The leading dimension of the array A. LDA >= max(1,N). > \endverbatim > > \param[out] D > \verbatim > D is DOUBLE PRECISION array, dimension (N) > The diagonal elements of the tridiagonal matrix T: > D(i) = A(i,i). > \endverbatim > > \param[out] E > \verbatim > E is DOUBLE PRECISION array, dimension (N-1) > The off-diagonal elements of the tridiagonal matrix T: > E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'. > \endverbatim > > \param[out] TAU > \verbatim > TAU is DOUBLE PRECISION array, dimension (N-1) > The scalar factors of the elementary reflectors (see Further > Details). > \endverbatim > > \param[out] WORK > \verbatim > WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. > \endverbatim > > \param[in] LWORK > \verbatim > LWORK is INTEGER > The dimension of the array WORK. LWORK >= 1. > For optimum performance LWORK >= N*NB, where NB is the > optimal blocksize. > > If LWORK = -1, then a workspace query is assumed; the routine > only calculates the optimal size of the WORK array, returns > this value as the first entry of the WORK array, and no error > message related to LWORK is issued by XERBLA. > \endverbatim > > \param[out] INFO > \verbatim > INFO is INTEGER > = 0: successful exit > < 0: if INFO = -i, the i-th argument had an illegal value > \endverbatim Authors: ======== > \author Univ. of Tennessee > \author Univ. of California Berkeley > \author Univ. of Colorado Denver > \author NAG Ltd. > \date November 2011 > \ingroup doubleSYcomputational > \par Further Details: ===================== > > \verbatim > > If UPLO = 'U', the matrix Q is represented as a product of elementary > reflectors > > Q = H(n-1) . . . H(2) H(1). > > Each H(i) has the form > > H(i) = I - tau * v * v**T > > where tau is a real scalar, and v is a real vector with > v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in > A(1:i-1,i+1), and tau in TAU(i). > > If UPLO = 'L', the matrix Q is represented as a product of elementary > reflectors > > Q = H(1) H(2) . . . H(n-1). > > Each H(i) has the form > > H(i) = I - tau * v * v**T > > where tau is a real scalar, and v is a real vector with > v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i), > and tau in TAU(i). > > The contents of A on exit are illustrated by the following examples > with n = 5: > > if UPLO = 'U': if UPLO = 'L': > > ( d e v2 v3 v4 ) ( d ) > ( d e v3 v4 ) ( e d ) > ( d e v4 ) ( v1 e d ) > ( d e ) ( v1 v2 e d ) > ( d ) ( v1 v2 v3 e d ) > > where d and e denote diagonal and off-diagonal elements of T, and vi > denotes an element of the vector defining H(i). > \endverbatim > ===================================================================== Subroutine */ int igraphdsytrd_(char *uplo, integer *n, doublereal *a, integer * lda, doublereal *d__, doublereal *e, doublereal *tau, doublereal * work, integer *lwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3; /* Local variables */ integer i__, j, nb, kk, nx, iws; extern logical igraphlsame_(char *, char *); integer nbmin, iinfo; logical upper; extern /* Subroutine */ int igraphdsytd2_(char *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, integer *), igraphdsyr2k_(char *, char *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *), igraphdlatrd_(char *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, integer *), igraphxerbla_(char *, integer *, ftnlen); extern integer igraphilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *, ftnlen, ftnlen); integer ldwork, lwkopt; logical lquery; /* -- LAPACK computational routine (version 3.4.0) -- -- LAPACK is a software package provided by Univ. of Tennessee, -- -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- November 2011 ===================================================================== Test the input parameters Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --d__; --e; --tau; --work; /* Function Body */ *info = 0; upper = igraphlsame_(uplo, "U"); lquery = *lwork == -1; if (! upper && ! igraphlsame_(uplo, "L")) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*lda < max(1,*n)) { *info = -4; } else if (*lwork < 1 && ! lquery) { *info = -9; } if (*info == 0) { /* Determine the block size. */ nb = igraphilaenv_(&c__1, "DSYTRD", uplo, n, &c_n1, &c_n1, &c_n1, (ftnlen)6, (ftnlen)1); lwkopt = *n * nb; work[1] = (doublereal) lwkopt; } if (*info != 0) { i__1 = -(*info); igraphxerbla_("DSYTRD", &i__1, (ftnlen)6); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*n == 0) { work[1] = 1.; return 0; } nx = *n; iws = 1; if (nb > 1 && nb < *n) { /* Determine when to cross over from blocked to unblocked code (last block is always handled by unblocked code). Computing MAX */ i__1 = nb, i__2 = igraphilaenv_(&c__3, "DSYTRD", uplo, n, &c_n1, &c_n1, & c_n1, (ftnlen)6, (ftnlen)1); nx = max(i__1,i__2); if (nx < *n) { /* Determine if workspace is large enough for blocked code. */ ldwork = *n; iws = ldwork * nb; if (*lwork < iws) { /* Not enough workspace to use optimal NB: determine the minimum value of NB, and reduce NB or force use of unblocked code by setting NX = N. Computing MAX */ i__1 = *lwork / ldwork; nb = max(i__1,1); nbmin = igraphilaenv_(&c__2, "DSYTRD", uplo, n, &c_n1, &c_n1, &c_n1, (ftnlen)6, (ftnlen)1); if (nb < nbmin) { nx = *n; } } } else { nx = *n; } } else { nb = 1; } if (upper) { /* Reduce the upper triangle of A. Columns 1:kk are handled by the unblocked method. */ kk = *n - (*n - nx + nb - 1) / nb * nb; i__1 = kk + 1; i__2 = -nb; for (i__ = *n - nb + 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) { /* Reduce columns i:i+nb-1 to tridiagonal form and form the matrix W which is needed to update the unreduced part of the matrix */ i__3 = i__ + nb - 1; igraphdlatrd_(uplo, &i__3, &nb, &a[a_offset], lda, &e[1], &tau[1], & work[1], &ldwork); /* Update the unreduced submatrix A(1:i-1,1:i-1), using an update of the form: A := A - V*W**T - W*V**T */ i__3 = i__ - 1; igraphdsyr2k_(uplo, "No transpose", &i__3, &nb, &c_b22, &a[i__ * a_dim1 + 1], lda, &work[1], &ldwork, &c_b23, &a[a_offset], lda); /* Copy superdiagonal elements back into A, and diagonal elements into D */ i__3 = i__ + nb - 1; for (j = i__; j <= i__3; ++j) { a[j - 1 + j * a_dim1] = e[j - 1]; d__[j] = a[j + j * a_dim1]; /* L10: */ } /* L20: */ } /* Use unblocked code to reduce the last or only block */ igraphdsytd2_(uplo, &kk, &a[a_offset], lda, &d__[1], &e[1], &tau[1], &iinfo); } else { /* Reduce the lower triangle of A */ i__2 = *n - nx; i__1 = nb; for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__1) { /* Reduce columns i:i+nb-1 to tridiagonal form and form the matrix W which is needed to update the unreduced part of the matrix */ i__3 = *n - i__ + 1; igraphdlatrd_(uplo, &i__3, &nb, &a[i__ + i__ * a_dim1], lda, &e[i__], & tau[i__], &work[1], &ldwork); /* Update the unreduced submatrix A(i+ib:n,i+ib:n), using an update of the form: A := A - V*W**T - W*V**T */ i__3 = *n - i__ - nb + 1; igraphdsyr2k_(uplo, "No transpose", &i__3, &nb, &c_b22, &a[i__ + nb + i__ * a_dim1], lda, &work[nb + 1], &ldwork, &c_b23, &a[ i__ + nb + (i__ + nb) * a_dim1], lda); /* Copy subdiagonal elements back into A, and diagonal elements into D */ i__3 = i__ + nb - 1; for (j = i__; j <= i__3; ++j) { a[j + 1 + j * a_dim1] = e[j]; d__[j] = a[j + j * a_dim1]; /* L30: */ } /* L40: */ } /* Use unblocked code to reduce the last or only block */ i__1 = *n - i__ + 1; igraphdsytd2_(uplo, &i__1, &a[i__ + i__ * a_dim1], lda, &d__[i__], &e[i__], &tau[i__], &iinfo); } work[1] = (doublereal) lwkopt; return 0; /* End of DSYTRD */ } /* igraphdsytrd_ */