/* -- translated by f2c (version 20191129). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Table of constant values */ static logical c_false = FALSE_; static integer c__1 = 1; static doublereal c_b22 = 1.; static doublereal c_b25 = 0.; static integer c__2 = 2; static logical c_true = TRUE_; /* > \brief \b DTREVC =========== DOCUMENTATION =========== Online html documentation available at http://www.netlib.org/lapack/explore-html/ > \htmlonly > Download DTREVC + dependencies > > [TGZ] > > [ZIP] > > [TXT] > \endhtmlonly Definition: =========== SUBROUTINE DTREVC( SIDE, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR, LDVR, MM, M, WORK, INFO ) CHARACTER HOWMNY, SIDE INTEGER INFO, LDT, LDVL, LDVR, M, MM, N LOGICAL SELECT( * ) DOUBLE PRECISION T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ), $ WORK( * ) > \par Purpose: ============= > > \verbatim > > DTREVC computes some or all of the right and/or left eigenvectors of > a real upper quasi-triangular matrix T. > Matrices of this type are produced by the Schur factorization of > a real general matrix: A = Q*T*Q**T, as computed by DHSEQR. > > The right eigenvector x and the left eigenvector y of T corresponding > to an eigenvalue w are defined by: > > T*x = w*x, (y**T)*T = w*(y**T) > > where y**T denotes the transpose of y. > The eigenvalues are not input to this routine, but are read directly > from the diagonal blocks of T. > > This routine returns the matrices X and/or Y of right and left > eigenvectors of T, or the products Q*X and/or Q*Y, where Q is an > input matrix. If Q is the orthogonal factor that reduces a matrix > A to Schur form T, then Q*X and Q*Y are the matrices of right and > left eigenvectors of A. > \endverbatim Arguments: ========== > \param[in] SIDE > \verbatim > SIDE is CHARACTER*1 > = 'R': compute right eigenvectors only; > = 'L': compute left eigenvectors only; > = 'B': compute both right and left eigenvectors. > \endverbatim > > \param[in] HOWMNY > \verbatim > HOWMNY is CHARACTER*1 > = 'A': compute all right and/or left eigenvectors; > = 'B': compute all right and/or left eigenvectors, > backtransformed by the matrices in VR and/or VL; > = 'S': compute selected right and/or left eigenvectors, > as indicated by the logical array SELECT. > \endverbatim > > \param[in,out] SELECT > \verbatim > SELECT is LOGICAL array, dimension (N) > If HOWMNY = 'S', SELECT specifies the eigenvectors to be > computed. > If w(j) is a real eigenvalue, the corresponding real > eigenvector is computed if SELECT(j) is .TRUE.. > If w(j) and w(j+1) are the real and imaginary parts of a > complex eigenvalue, the corresponding complex eigenvector is > computed if either SELECT(j) or SELECT(j+1) is .TRUE., and > on exit SELECT(j) is set to .TRUE. and SELECT(j+1) is set to > .FALSE.. > Not referenced if HOWMNY = 'A' or 'B'. > \endverbatim > > \param[in] N > \verbatim > N is INTEGER > The order of the matrix T. N >= 0. > \endverbatim > > \param[in] T > \verbatim > T is DOUBLE PRECISION array, dimension (LDT,N) > The upper quasi-triangular matrix T in Schur canonical form. > \endverbatim > > \param[in] LDT > \verbatim > LDT is INTEGER > The leading dimension of the array T. LDT >= max(1,N). > \endverbatim > > \param[in,out] VL > \verbatim > VL is DOUBLE PRECISION array, dimension (LDVL,MM) > On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must > contain an N-by-N matrix Q (usually the orthogonal matrix Q > of Schur vectors returned by DHSEQR). > On exit, if SIDE = 'L' or 'B', VL contains: > if HOWMNY = 'A', the matrix Y of left eigenvectors of T; > if HOWMNY = 'B', the matrix Q*Y; > if HOWMNY = 'S', the left eigenvectors of T specified by > SELECT, stored consecutively in the columns > of VL, in the same order as their > eigenvalues. > A complex eigenvector corresponding to a complex eigenvalue > is stored in two consecutive columns, the first holding the > real part, and the second the imaginary part. > Not referenced if SIDE = 'R'. > \endverbatim > > \param[in] LDVL > \verbatim > LDVL is INTEGER > The leading dimension of the array VL. LDVL >= 1, and if > SIDE = 'L' or 'B', LDVL >= N. > \endverbatim > > \param[in,out] VR > \verbatim > VR is DOUBLE PRECISION array, dimension (LDVR,MM) > On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must > contain an N-by-N matrix Q (usually the orthogonal matrix Q > of Schur vectors returned by DHSEQR). > On exit, if SIDE = 'R' or 'B', VR contains: > if HOWMNY = 'A', the matrix X of right eigenvectors of T; > if HOWMNY = 'B', the matrix Q*X; > if HOWMNY = 'S', the right eigenvectors of T specified by > SELECT, stored consecutively in the columns > of VR, in the same order as their > eigenvalues. > A complex eigenvector corresponding to a complex eigenvalue > is stored in two consecutive columns, the first holding the > real part and the second the imaginary part. > Not referenced if SIDE = 'L'. > \endverbatim > > \param[in] LDVR > \verbatim > LDVR is INTEGER > The leading dimension of the array VR. LDVR >= 1, and if > SIDE = 'R' or 'B', LDVR >= N. > \endverbatim > > \param[in] MM > \verbatim > MM is INTEGER > The number of columns in the arrays VL and/or VR. MM >= M. > \endverbatim > > \param[out] M > \verbatim > M is INTEGER > The number of columns in the arrays VL and/or VR actually > used to store the eigenvectors. > If HOWMNY = 'A' or 'B', M is set to N. > Each selected real eigenvector occupies one column and each > selected complex eigenvector occupies two columns. > \endverbatim > > \param[out] WORK > \verbatim > WORK is DOUBLE PRECISION array, dimension (3*N) > \endverbatim > > \param[out] INFO > \verbatim > INFO is INTEGER > = 0: successful exit > < 0: if INFO = -i, the i-th argument had an illegal value > \endverbatim Authors: ======== > \author Univ. of Tennessee > \author Univ. of California Berkeley > \author Univ. of Colorado Denver > \author NAG Ltd. > \date November 2011 > \ingroup doubleOTHERcomputational > \par Further Details: ===================== > > \verbatim > > The algorithm used in this program is basically backward (forward) > substitution, with scaling to make the the code robust against > possible overflow. > > Each eigenvector is normalized so that the element of largest > magnitude has magnitude 1; here the magnitude of a complex number > (x,y) is taken to be |x| + |y|. > \endverbatim > ===================================================================== Subroutine */ int igraphdtrevc_(char *side, char *howmny, logical *select, integer *n, doublereal *t, integer *ldt, doublereal *vl, integer * ldvl, doublereal *vr, integer *ldvr, integer *mm, integer *m, doublereal *work, integer *info) { /* System generated locals */ integer t_dim1, t_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1, i__2, i__3; doublereal d__1, d__2, d__3, d__4; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ integer i__, j, k; doublereal x[4] /* was [2][2] */; integer j1, j2, n2, ii, ki, ip, is; doublereal wi, wr, rec, ulp, beta, emax; logical pair; extern doublereal igraphddot_(integer *, doublereal *, integer *, doublereal *, integer *); logical allv; integer ierr; doublereal unfl, ovfl, smin; logical over; doublereal vmax; integer jnxt; extern /* Subroutine */ int igraphdscal_(integer *, doublereal *, doublereal *, integer *); doublereal scale; extern logical igraphlsame_(char *, char *); extern /* Subroutine */ int igraphdgemv_(char *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *); doublereal remax; extern /* Subroutine */ int igraphdcopy_(integer *, doublereal *, integer *, doublereal *, integer *); logical leftv, bothv; extern /* Subroutine */ int igraphdaxpy_(integer *, doublereal *, doublereal *, integer *, doublereal *, integer *); doublereal vcrit; logical somev; doublereal xnorm; extern /* Subroutine */ int igraphdlaln2_(logical *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, doublereal * , doublereal *, integer *, doublereal *, doublereal *, integer *), igraphdlabad_(doublereal *, doublereal *); extern doublereal igraphdlamch_(char *); extern integer igraphidamax_(integer *, doublereal *, integer *); extern /* Subroutine */ int igraphxerbla_(char *, integer *, ftnlen); doublereal bignum; logical rightv; doublereal smlnum; /* -- LAPACK computational routine (version 3.4.0) -- -- LAPACK is a software package provided by Univ. of Tennessee, -- -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- November 2011 ===================================================================== Decode and test the input parameters Parameter adjustments */ --select; t_dim1 = *ldt; t_offset = 1 + t_dim1; t -= t_offset; vl_dim1 = *ldvl; vl_offset = 1 + vl_dim1; vl -= vl_offset; vr_dim1 = *ldvr; vr_offset = 1 + vr_dim1; vr -= vr_offset; --work; /* Function Body */ bothv = igraphlsame_(side, "B"); rightv = igraphlsame_(side, "R") || bothv; leftv = igraphlsame_(side, "L") || bothv; allv = igraphlsame_(howmny, "A"); over = igraphlsame_(howmny, "B"); somev = igraphlsame_(howmny, "S"); *info = 0; if (! rightv && ! leftv) { *info = -1; } else if (! allv && ! over && ! somev) { *info = -2; } else if (*n < 0) { *info = -4; } else if (*ldt < max(1,*n)) { *info = -6; } else if (*ldvl < 1 || leftv && *ldvl < *n) { *info = -8; } else if (*ldvr < 1 || rightv && *ldvr < *n) { *info = -10; } else { /* Set M to the number of columns required to store the selected eigenvectors, standardize the array SELECT if necessary, and test MM. */ if (somev) { *m = 0; pair = FALSE_; i__1 = *n; for (j = 1; j <= i__1; ++j) { if (pair) { pair = FALSE_; select[j] = FALSE_; } else { if (j < *n) { if (t[j + 1 + j * t_dim1] == 0.) { if (select[j]) { ++(*m); } } else { pair = TRUE_; if (select[j] || select[j + 1]) { select[j] = TRUE_; *m += 2; } } } else { if (select[*n]) { ++(*m); } } } /* L10: */ } } else { *m = *n; } if (*mm < *m) { *info = -11; } } if (*info != 0) { i__1 = -(*info); igraphxerbla_("DTREVC", &i__1, (ftnlen)6); return 0; } /* Quick return if possible. */ if (*n == 0) { return 0; } /* Set the constants to control overflow. */ unfl = igraphdlamch_("Safe minimum"); ovfl = 1. / unfl; igraphdlabad_(&unfl, &ovfl); ulp = igraphdlamch_("Precision"); smlnum = unfl * (*n / ulp); bignum = (1. - ulp) / smlnum; /* Compute 1-norm of each column of strictly upper triangular part of T to control overflow in triangular solver. */ work[1] = 0.; i__1 = *n; for (j = 2; j <= i__1; ++j) { work[j] = 0.; i__2 = j - 1; for (i__ = 1; i__ <= i__2; ++i__) { work[j] += (d__1 = t[i__ + j * t_dim1], abs(d__1)); /* L20: */ } /* L30: */ } /* Index IP is used to specify the real or complex eigenvalue: IP = 0, real eigenvalue, 1, first of conjugate complex pair: (wr,wi) -1, second of conjugate complex pair: (wr,wi) */ n2 = *n << 1; if (rightv) { /* Compute right eigenvectors. */ ip = 0; is = *m; for (ki = *n; ki >= 1; --ki) { if (ip == 1) { goto L130; } if (ki == 1) { goto L40; } if (t[ki + (ki - 1) * t_dim1] == 0.) { goto L40; } ip = -1; L40: if (somev) { if (ip == 0) { if (! select[ki]) { goto L130; } } else { if (! select[ki - 1]) { goto L130; } } } /* Compute the KI-th eigenvalue (WR,WI). */ wr = t[ki + ki * t_dim1]; wi = 0.; if (ip != 0) { wi = sqrt((d__1 = t[ki + (ki - 1) * t_dim1], abs(d__1))) * sqrt((d__2 = t[ki - 1 + ki * t_dim1], abs(d__2))); } /* Computing MAX */ d__1 = ulp * (abs(wr) + abs(wi)); smin = max(d__1,smlnum); if (ip == 0) { /* Real right eigenvector */ work[ki + *n] = 1.; /* Form right-hand side */ i__1 = ki - 1; for (k = 1; k <= i__1; ++k) { work[k + *n] = -t[k + ki * t_dim1]; /* L50: */ } /* Solve the upper quasi-triangular system: (T(1:KI-1,1:KI-1) - WR)*X = SCALE*WORK. */ jnxt = ki - 1; for (j = ki - 1; j >= 1; --j) { if (j > jnxt) { goto L60; } j1 = j; j2 = j; jnxt = j - 1; if (j > 1) { if (t[j + (j - 1) * t_dim1] != 0.) { j1 = j - 1; jnxt = j - 2; } } if (j1 == j2) { /* 1-by-1 diagonal block */ igraphdlaln2_(&c_false, &c__1, &c__1, &smin, &c_b22, &t[j + j * t_dim1], ldt, &c_b22, &c_b22, &work[j + * n], n, &wr, &c_b25, x, &c__2, &scale, &xnorm, &ierr); /* Scale X(1,1) to avoid overflow when updating the right-hand side. */ if (xnorm > 1.) { if (work[j] > bignum / xnorm) { x[0] /= xnorm; scale /= xnorm; } } /* Scale if necessary */ if (scale != 1.) { igraphdscal_(&ki, &scale, &work[*n + 1], &c__1); } work[j + *n] = x[0]; /* Update right-hand side */ i__1 = j - 1; d__1 = -x[0]; igraphdaxpy_(&i__1, &d__1, &t[j * t_dim1 + 1], &c__1, &work[ *n + 1], &c__1); } else { /* 2-by-2 diagonal block */ igraphdlaln2_(&c_false, &c__2, &c__1, &smin, &c_b22, &t[j - 1 + (j - 1) * t_dim1], ldt, &c_b22, &c_b22, & work[j - 1 + *n], n, &wr, &c_b25, x, &c__2, & scale, &xnorm, &ierr); /* Scale X(1,1) and X(2,1) to avoid overflow when updating the right-hand side. */ if (xnorm > 1.) { /* Computing MAX */ d__1 = work[j - 1], d__2 = work[j]; beta = max(d__1,d__2); if (beta > bignum / xnorm) { x[0] /= xnorm; x[1] /= xnorm; scale /= xnorm; } } /* Scale if necessary */ if (scale != 1.) { igraphdscal_(&ki, &scale, &work[*n + 1], &c__1); } work[j - 1 + *n] = x[0]; work[j + *n] = x[1]; /* Update right-hand side */ i__1 = j - 2; d__1 = -x[0]; igraphdaxpy_(&i__1, &d__1, &t[(j - 1) * t_dim1 + 1], &c__1, &work[*n + 1], &c__1); i__1 = j - 2; d__1 = -x[1]; igraphdaxpy_(&i__1, &d__1, &t[j * t_dim1 + 1], &c__1, &work[ *n + 1], &c__1); } L60: ; } /* Copy the vector x or Q*x to VR and normalize. */ if (! over) { igraphdcopy_(&ki, &work[*n + 1], &c__1, &vr[is * vr_dim1 + 1], & c__1); ii = igraphidamax_(&ki, &vr[is * vr_dim1 + 1], &c__1); remax = 1. / (d__1 = vr[ii + is * vr_dim1], abs(d__1)); igraphdscal_(&ki, &remax, &vr[is * vr_dim1 + 1], &c__1); i__1 = *n; for (k = ki + 1; k <= i__1; ++k) { vr[k + is * vr_dim1] = 0.; /* L70: */ } } else { if (ki > 1) { i__1 = ki - 1; igraphdgemv_("N", n, &i__1, &c_b22, &vr[vr_offset], ldvr, & work[*n + 1], &c__1, &work[ki + *n], &vr[ki * vr_dim1 + 1], &c__1); } ii = igraphidamax_(n, &vr[ki * vr_dim1 + 1], &c__1); remax = 1. / (d__1 = vr[ii + ki * vr_dim1], abs(d__1)); igraphdscal_(n, &remax, &vr[ki * vr_dim1 + 1], &c__1); } } else { /* Complex right eigenvector. Initial solve [ (T(KI-1,KI-1) T(KI-1,KI) ) - (WR + I* WI)]*X = 0. [ (T(KI,KI-1) T(KI,KI) ) ] */ if ((d__1 = t[ki - 1 + ki * t_dim1], abs(d__1)) >= (d__2 = t[ ki + (ki - 1) * t_dim1], abs(d__2))) { work[ki - 1 + *n] = 1.; work[ki + n2] = wi / t[ki - 1 + ki * t_dim1]; } else { work[ki - 1 + *n] = -wi / t[ki + (ki - 1) * t_dim1]; work[ki + n2] = 1.; } work[ki + *n] = 0.; work[ki - 1 + n2] = 0.; /* Form right-hand side */ i__1 = ki - 2; for (k = 1; k <= i__1; ++k) { work[k + *n] = -work[ki - 1 + *n] * t[k + (ki - 1) * t_dim1]; work[k + n2] = -work[ki + n2] * t[k + ki * t_dim1]; /* L80: */ } /* Solve upper quasi-triangular system: (T(1:KI-2,1:KI-2) - (WR+i*WI))*X = SCALE*(WORK+i*WORK2) */ jnxt = ki - 2; for (j = ki - 2; j >= 1; --j) { if (j > jnxt) { goto L90; } j1 = j; j2 = j; jnxt = j - 1; if (j > 1) { if (t[j + (j - 1) * t_dim1] != 0.) { j1 = j - 1; jnxt = j - 2; } } if (j1 == j2) { /* 1-by-1 diagonal block */ igraphdlaln2_(&c_false, &c__1, &c__2, &smin, &c_b22, &t[j + j * t_dim1], ldt, &c_b22, &c_b22, &work[j + * n], n, &wr, &wi, x, &c__2, &scale, &xnorm, & ierr); /* Scale X(1,1) and X(1,2) to avoid overflow when updating the right-hand side. */ if (xnorm > 1.) { if (work[j] > bignum / xnorm) { x[0] /= xnorm; x[2] /= xnorm; scale /= xnorm; } } /* Scale if necessary */ if (scale != 1.) { igraphdscal_(&ki, &scale, &work[*n + 1], &c__1); igraphdscal_(&ki, &scale, &work[n2 + 1], &c__1); } work[j + *n] = x[0]; work[j + n2] = x[2]; /* Update the right-hand side */ i__1 = j - 1; d__1 = -x[0]; igraphdaxpy_(&i__1, &d__1, &t[j * t_dim1 + 1], &c__1, &work[ *n + 1], &c__1); i__1 = j - 1; d__1 = -x[2]; igraphdaxpy_(&i__1, &d__1, &t[j * t_dim1 + 1], &c__1, &work[ n2 + 1], &c__1); } else { /* 2-by-2 diagonal block */ igraphdlaln2_(&c_false, &c__2, &c__2, &smin, &c_b22, &t[j - 1 + (j - 1) * t_dim1], ldt, &c_b22, &c_b22, & work[j - 1 + *n], n, &wr, &wi, x, &c__2, & scale, &xnorm, &ierr); /* Scale X to avoid overflow when updating the right-hand side. */ if (xnorm > 1.) { /* Computing MAX */ d__1 = work[j - 1], d__2 = work[j]; beta = max(d__1,d__2); if (beta > bignum / xnorm) { rec = 1. / xnorm; x[0] *= rec; x[2] *= rec; x[1] *= rec; x[3] *= rec; scale *= rec; } } /* Scale if necessary */ if (scale != 1.) { igraphdscal_(&ki, &scale, &work[*n + 1], &c__1); igraphdscal_(&ki, &scale, &work[n2 + 1], &c__1); } work[j - 1 + *n] = x[0]; work[j + *n] = x[1]; work[j - 1 + n2] = x[2]; work[j + n2] = x[3]; /* Update the right-hand side */ i__1 = j - 2; d__1 = -x[0]; igraphdaxpy_(&i__1, &d__1, &t[(j - 1) * t_dim1 + 1], &c__1, &work[*n + 1], &c__1); i__1 = j - 2; d__1 = -x[1]; igraphdaxpy_(&i__1, &d__1, &t[j * t_dim1 + 1], &c__1, &work[ *n + 1], &c__1); i__1 = j - 2; d__1 = -x[2]; igraphdaxpy_(&i__1, &d__1, &t[(j - 1) * t_dim1 + 1], &c__1, &work[n2 + 1], &c__1); i__1 = j - 2; d__1 = -x[3]; igraphdaxpy_(&i__1, &d__1, &t[j * t_dim1 + 1], &c__1, &work[ n2 + 1], &c__1); } L90: ; } /* Copy the vector x or Q*x to VR and normalize. */ if (! over) { igraphdcopy_(&ki, &work[*n + 1], &c__1, &vr[(is - 1) * vr_dim1 + 1], &c__1); igraphdcopy_(&ki, &work[n2 + 1], &c__1, &vr[is * vr_dim1 + 1], & c__1); emax = 0.; i__1 = ki; for (k = 1; k <= i__1; ++k) { /* Computing MAX */ d__3 = emax, d__4 = (d__1 = vr[k + (is - 1) * vr_dim1] , abs(d__1)) + (d__2 = vr[k + is * vr_dim1], abs(d__2)); emax = max(d__3,d__4); /* L100: */ } remax = 1. / emax; igraphdscal_(&ki, &remax, &vr[(is - 1) * vr_dim1 + 1], &c__1); igraphdscal_(&ki, &remax, &vr[is * vr_dim1 + 1], &c__1); i__1 = *n; for (k = ki + 1; k <= i__1; ++k) { vr[k + (is - 1) * vr_dim1] = 0.; vr[k + is * vr_dim1] = 0.; /* L110: */ } } else { if (ki > 2) { i__1 = ki - 2; igraphdgemv_("N", n, &i__1, &c_b22, &vr[vr_offset], ldvr, & work[*n + 1], &c__1, &work[ki - 1 + *n], &vr[( ki - 1) * vr_dim1 + 1], &c__1); i__1 = ki - 2; igraphdgemv_("N", n, &i__1, &c_b22, &vr[vr_offset], ldvr, & work[n2 + 1], &c__1, &work[ki + n2], &vr[ki * vr_dim1 + 1], &c__1); } else { igraphdscal_(n, &work[ki - 1 + *n], &vr[(ki - 1) * vr_dim1 + 1], &c__1); igraphdscal_(n, &work[ki + n2], &vr[ki * vr_dim1 + 1], & c__1); } emax = 0.; i__1 = *n; for (k = 1; k <= i__1; ++k) { /* Computing MAX */ d__3 = emax, d__4 = (d__1 = vr[k + (ki - 1) * vr_dim1] , abs(d__1)) + (d__2 = vr[k + ki * vr_dim1], abs(d__2)); emax = max(d__3,d__4); /* L120: */ } remax = 1. / emax; igraphdscal_(n, &remax, &vr[(ki - 1) * vr_dim1 + 1], &c__1); igraphdscal_(n, &remax, &vr[ki * vr_dim1 + 1], &c__1); } } --is; if (ip != 0) { --is; } L130: if (ip == 1) { ip = 0; } if (ip == -1) { ip = 1; } /* L140: */ } } if (leftv) { /* Compute left eigenvectors. */ ip = 0; is = 1; i__1 = *n; for (ki = 1; ki <= i__1; ++ki) { if (ip == -1) { goto L250; } if (ki == *n) { goto L150; } if (t[ki + 1 + ki * t_dim1] == 0.) { goto L150; } ip = 1; L150: if (somev) { if (! select[ki]) { goto L250; } } /* Compute the KI-th eigenvalue (WR,WI). */ wr = t[ki + ki * t_dim1]; wi = 0.; if (ip != 0) { wi = sqrt((d__1 = t[ki + (ki + 1) * t_dim1], abs(d__1))) * sqrt((d__2 = t[ki + 1 + ki * t_dim1], abs(d__2))); } /* Computing MAX */ d__1 = ulp * (abs(wr) + abs(wi)); smin = max(d__1,smlnum); if (ip == 0) { /* Real left eigenvector. */ work[ki + *n] = 1.; /* Form right-hand side */ i__2 = *n; for (k = ki + 1; k <= i__2; ++k) { work[k + *n] = -t[ki + k * t_dim1]; /* L160: */ } /* Solve the quasi-triangular system: (T(KI+1:N,KI+1:N) - WR)**T*X = SCALE*WORK */ vmax = 1.; vcrit = bignum; jnxt = ki + 1; i__2 = *n; for (j = ki + 1; j <= i__2; ++j) { if (j < jnxt) { goto L170; } j1 = j; j2 = j; jnxt = j + 1; if (j < *n) { if (t[j + 1 + j * t_dim1] != 0.) { j2 = j + 1; jnxt = j + 2; } } if (j1 == j2) { /* 1-by-1 diagonal block Scale if necessary to avoid overflow when forming the right-hand side. */ if (work[j] > vcrit) { rec = 1. / vmax; i__3 = *n - ki + 1; igraphdscal_(&i__3, &rec, &work[ki + *n], &c__1); vmax = 1.; vcrit = bignum; } i__3 = j - ki - 1; work[j + *n] -= igraphddot_(&i__3, &t[ki + 1 + j * t_dim1], &c__1, &work[ki + 1 + *n], &c__1); /* Solve (T(J,J)-WR)**T*X = WORK */ igraphdlaln2_(&c_false, &c__1, &c__1, &smin, &c_b22, &t[j + j * t_dim1], ldt, &c_b22, &c_b22, &work[j + * n], n, &wr, &c_b25, x, &c__2, &scale, &xnorm, &ierr); /* Scale if necessary */ if (scale != 1.) { i__3 = *n - ki + 1; igraphdscal_(&i__3, &scale, &work[ki + *n], &c__1); } work[j + *n] = x[0]; /* Computing MAX */ d__2 = (d__1 = work[j + *n], abs(d__1)); vmax = max(d__2,vmax); vcrit = bignum / vmax; } else { /* 2-by-2 diagonal block Scale if necessary to avoid overflow when forming the right-hand side. Computing MAX */ d__1 = work[j], d__2 = work[j + 1]; beta = max(d__1,d__2); if (beta > vcrit) { rec = 1. / vmax; i__3 = *n - ki + 1; igraphdscal_(&i__3, &rec, &work[ki + *n], &c__1); vmax = 1.; vcrit = bignum; } i__3 = j - ki - 1; work[j + *n] -= igraphddot_(&i__3, &t[ki + 1 + j * t_dim1], &c__1, &work[ki + 1 + *n], &c__1); i__3 = j - ki - 1; work[j + 1 + *n] -= igraphddot_(&i__3, &t[ki + 1 + (j + 1) * t_dim1], &c__1, &work[ki + 1 + *n], &c__1); /* Solve [T(J,J)-WR T(J,J+1) ]**T * X = SCALE*( WORK1 ) [T(J+1,J) T(J+1,J+1)-WR] ( WORK2 ) */ igraphdlaln2_(&c_true, &c__2, &c__1, &smin, &c_b22, &t[j + j * t_dim1], ldt, &c_b22, &c_b22, &work[j + * n], n, &wr, &c_b25, x, &c__2, &scale, &xnorm, &ierr); /* Scale if necessary */ if (scale != 1.) { i__3 = *n - ki + 1; igraphdscal_(&i__3, &scale, &work[ki + *n], &c__1); } work[j + *n] = x[0]; work[j + 1 + *n] = x[1]; /* Computing MAX */ d__3 = (d__1 = work[j + *n], abs(d__1)), d__4 = (d__2 = work[j + 1 + *n], abs(d__2)), d__3 = max( d__3,d__4); vmax = max(d__3,vmax); vcrit = bignum / vmax; } L170: ; } /* Copy the vector x or Q*x to VL and normalize. */ if (! over) { i__2 = *n - ki + 1; igraphdcopy_(&i__2, &work[ki + *n], &c__1, &vl[ki + is * vl_dim1], &c__1); i__2 = *n - ki + 1; ii = igraphidamax_(&i__2, &vl[ki + is * vl_dim1], &c__1) + ki - 1; remax = 1. / (d__1 = vl[ii + is * vl_dim1], abs(d__1)); i__2 = *n - ki + 1; igraphdscal_(&i__2, &remax, &vl[ki + is * vl_dim1], &c__1); i__2 = ki - 1; for (k = 1; k <= i__2; ++k) { vl[k + is * vl_dim1] = 0.; /* L180: */ } } else { if (ki < *n) { i__2 = *n - ki; igraphdgemv_("N", n, &i__2, &c_b22, &vl[(ki + 1) * vl_dim1 + 1], ldvl, &work[ki + 1 + *n], &c__1, &work[ ki + *n], &vl[ki * vl_dim1 + 1], &c__1); } ii = igraphidamax_(n, &vl[ki * vl_dim1 + 1], &c__1); remax = 1. / (d__1 = vl[ii + ki * vl_dim1], abs(d__1)); igraphdscal_(n, &remax, &vl[ki * vl_dim1 + 1], &c__1); } } else { /* Complex left eigenvector. Initial solve: ((T(KI,KI) T(KI,KI+1) )**T - (WR - I* WI))*X = 0. ((T(KI+1,KI) T(KI+1,KI+1)) ) */ if ((d__1 = t[ki + (ki + 1) * t_dim1], abs(d__1)) >= (d__2 = t[ki + 1 + ki * t_dim1], abs(d__2))) { work[ki + *n] = wi / t[ki + (ki + 1) * t_dim1]; work[ki + 1 + n2] = 1.; } else { work[ki + *n] = 1.; work[ki + 1 + n2] = -wi / t[ki + 1 + ki * t_dim1]; } work[ki + 1 + *n] = 0.; work[ki + n2] = 0.; /* Form right-hand side */ i__2 = *n; for (k = ki + 2; k <= i__2; ++k) { work[k + *n] = -work[ki + *n] * t[ki + k * t_dim1]; work[k + n2] = -work[ki + 1 + n2] * t[ki + 1 + k * t_dim1] ; /* L190: */ } /* Solve complex quasi-triangular system: ( T(KI+2,N:KI+2,N) - (WR-i*WI) )*X = WORK1+i*WORK2 */ vmax = 1.; vcrit = bignum; jnxt = ki + 2; i__2 = *n; for (j = ki + 2; j <= i__2; ++j) { if (j < jnxt) { goto L200; } j1 = j; j2 = j; jnxt = j + 1; if (j < *n) { if (t[j + 1 + j * t_dim1] != 0.) { j2 = j + 1; jnxt = j + 2; } } if (j1 == j2) { /* 1-by-1 diagonal block Scale if necessary to avoid overflow when forming the right-hand side elements. */ if (work[j] > vcrit) { rec = 1. / vmax; i__3 = *n - ki + 1; igraphdscal_(&i__3, &rec, &work[ki + *n], &c__1); i__3 = *n - ki + 1; igraphdscal_(&i__3, &rec, &work[ki + n2], &c__1); vmax = 1.; vcrit = bignum; } i__3 = j - ki - 2; work[j + *n] -= igraphddot_(&i__3, &t[ki + 2 + j * t_dim1], &c__1, &work[ki + 2 + *n], &c__1); i__3 = j - ki - 2; work[j + n2] -= igraphddot_(&i__3, &t[ki + 2 + j * t_dim1], &c__1, &work[ki + 2 + n2], &c__1); /* Solve (T(J,J)-(WR-i*WI))*(X11+i*X12)= WK+I*WK2 */ d__1 = -wi; igraphdlaln2_(&c_false, &c__1, &c__2, &smin, &c_b22, &t[j + j * t_dim1], ldt, &c_b22, &c_b22, &work[j + * n], n, &wr, &d__1, x, &c__2, &scale, &xnorm, & ierr); /* Scale if necessary */ if (scale != 1.) { i__3 = *n - ki + 1; igraphdscal_(&i__3, &scale, &work[ki + *n], &c__1); i__3 = *n - ki + 1; igraphdscal_(&i__3, &scale, &work[ki + n2], &c__1); } work[j + *n] = x[0]; work[j + n2] = x[2]; /* Computing MAX */ d__3 = (d__1 = work[j + *n], abs(d__1)), d__4 = (d__2 = work[j + n2], abs(d__2)), d__3 = max(d__3, d__4); vmax = max(d__3,vmax); vcrit = bignum / vmax; } else { /* 2-by-2 diagonal block Scale if necessary to avoid overflow when forming the right-hand side elements. Computing MAX */ d__1 = work[j], d__2 = work[j + 1]; beta = max(d__1,d__2); if (beta > vcrit) { rec = 1. / vmax; i__3 = *n - ki + 1; igraphdscal_(&i__3, &rec, &work[ki + *n], &c__1); i__3 = *n - ki + 1; igraphdscal_(&i__3, &rec, &work[ki + n2], &c__1); vmax = 1.; vcrit = bignum; } i__3 = j - ki - 2; work[j + *n] -= igraphddot_(&i__3, &t[ki + 2 + j * t_dim1], &c__1, &work[ki + 2 + *n], &c__1); i__3 = j - ki - 2; work[j + n2] -= igraphddot_(&i__3, &t[ki + 2 + j * t_dim1], &c__1, &work[ki + 2 + n2], &c__1); i__3 = j - ki - 2; work[j + 1 + *n] -= igraphddot_(&i__3, &t[ki + 2 + (j + 1) * t_dim1], &c__1, &work[ki + 2 + *n], &c__1); i__3 = j - ki - 2; work[j + 1 + n2] -= igraphddot_(&i__3, &t[ki + 2 + (j + 1) * t_dim1], &c__1, &work[ki + 2 + n2], &c__1); /* Solve 2-by-2 complex linear equation ([T(j,j) T(j,j+1) ]**T-(wr-i*wi)*I)*X = SCALE*B ([T(j+1,j) T(j+1,j+1)] ) */ d__1 = -wi; igraphdlaln2_(&c_true, &c__2, &c__2, &smin, &c_b22, &t[j + j * t_dim1], ldt, &c_b22, &c_b22, &work[j + * n], n, &wr, &d__1, x, &c__2, &scale, &xnorm, & ierr); /* Scale if necessary */ if (scale != 1.) { i__3 = *n - ki + 1; igraphdscal_(&i__3, &scale, &work[ki + *n], &c__1); i__3 = *n - ki + 1; igraphdscal_(&i__3, &scale, &work[ki + n2], &c__1); } work[j + *n] = x[0]; work[j + n2] = x[2]; work[j + 1 + *n] = x[1]; work[j + 1 + n2] = x[3]; /* Computing MAX */ d__1 = abs(x[0]), d__2 = abs(x[2]), d__1 = max(d__1, d__2), d__2 = abs(x[1]), d__1 = max(d__1,d__2) , d__2 = abs(x[3]), d__1 = max(d__1,d__2); vmax = max(d__1,vmax); vcrit = bignum / vmax; } L200: ; } /* Copy the vector x or Q*x to VL and normalize. */ if (! over) { i__2 = *n - ki + 1; igraphdcopy_(&i__2, &work[ki + *n], &c__1, &vl[ki + is * vl_dim1], &c__1); i__2 = *n - ki + 1; igraphdcopy_(&i__2, &work[ki + n2], &c__1, &vl[ki + (is + 1) * vl_dim1], &c__1); emax = 0.; i__2 = *n; for (k = ki; k <= i__2; ++k) { /* Computing MAX */ d__3 = emax, d__4 = (d__1 = vl[k + is * vl_dim1], abs( d__1)) + (d__2 = vl[k + (is + 1) * vl_dim1], abs(d__2)); emax = max(d__3,d__4); /* L220: */ } remax = 1. / emax; i__2 = *n - ki + 1; igraphdscal_(&i__2, &remax, &vl[ki + is * vl_dim1], &c__1); i__2 = *n - ki + 1; igraphdscal_(&i__2, &remax, &vl[ki + (is + 1) * vl_dim1], &c__1) ; i__2 = ki - 1; for (k = 1; k <= i__2; ++k) { vl[k + is * vl_dim1] = 0.; vl[k + (is + 1) * vl_dim1] = 0.; /* L230: */ } } else { if (ki < *n - 1) { i__2 = *n - ki - 1; igraphdgemv_("N", n, &i__2, &c_b22, &vl[(ki + 2) * vl_dim1 + 1], ldvl, &work[ki + 2 + *n], &c__1, &work[ ki + *n], &vl[ki * vl_dim1 + 1], &c__1); i__2 = *n - ki - 1; igraphdgemv_("N", n, &i__2, &c_b22, &vl[(ki + 2) * vl_dim1 + 1], ldvl, &work[ki + 2 + n2], &c__1, &work[ ki + 1 + n2], &vl[(ki + 1) * vl_dim1 + 1], & c__1); } else { igraphdscal_(n, &work[ki + *n], &vl[ki * vl_dim1 + 1], & c__1); igraphdscal_(n, &work[ki + 1 + n2], &vl[(ki + 1) * vl_dim1 + 1], &c__1); } emax = 0.; i__2 = *n; for (k = 1; k <= i__2; ++k) { /* Computing MAX */ d__3 = emax, d__4 = (d__1 = vl[k + ki * vl_dim1], abs( d__1)) + (d__2 = vl[k + (ki + 1) * vl_dim1], abs(d__2)); emax = max(d__3,d__4); /* L240: */ } remax = 1. / emax; igraphdscal_(n, &remax, &vl[ki * vl_dim1 + 1], &c__1); igraphdscal_(n, &remax, &vl[(ki + 1) * vl_dim1 + 1], &c__1); } } ++is; if (ip != 0) { ++is; } L250: if (ip == -1) { ip = 0; } if (ip == 1) { ip = -1; } /* L260: */ } } return 0; /* End of DTREVC */ } /* igraphdtrevc_ */