/* -- translated by f2c (version 20191129). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Table of constant values */ static integer c__1 = 1; static integer c__2 = 2; /* > \brief \b DTREXC =========== DOCUMENTATION =========== Online html documentation available at http://www.netlib.org/lapack/explore-html/ > \htmlonly > Download DTREXC + dependencies > > [TGZ] > > [ZIP] > > [TXT] > \endhtmlonly Definition: =========== SUBROUTINE DTREXC( COMPQ, N, T, LDT, Q, LDQ, IFST, ILST, WORK, INFO ) CHARACTER COMPQ INTEGER IFST, ILST, INFO, LDQ, LDT, N DOUBLE PRECISION Q( LDQ, * ), T( LDT, * ), WORK( * ) > \par Purpose: ============= > > \verbatim > > DTREXC reorders the real Schur factorization of a real matrix > A = Q*T*Q**T, so that the diagonal block of T with row index IFST is > moved to row ILST. > > The real Schur form T is reordered by an orthogonal similarity > transformation Z**T*T*Z, and optionally the matrix Q of Schur vectors > is updated by postmultiplying it with Z. > > T must be in Schur canonical form (as returned by DHSEQR), that is, > block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each > 2-by-2 diagonal block has its diagonal elements equal and its > off-diagonal elements of opposite sign. > \endverbatim Arguments: ========== > \param[in] COMPQ > \verbatim > COMPQ is CHARACTER*1 > = 'V': update the matrix Q of Schur vectors; > = 'N': do not update Q. > \endverbatim > > \param[in] N > \verbatim > N is INTEGER > The order of the matrix T. N >= 0. > \endverbatim > > \param[in,out] T > \verbatim > T is DOUBLE PRECISION array, dimension (LDT,N) > On entry, the upper quasi-triangular matrix T, in Schur > Schur canonical form. > On exit, the reordered upper quasi-triangular matrix, again > in Schur canonical form. > \endverbatim > > \param[in] LDT > \verbatim > LDT is INTEGER > The leading dimension of the array T. LDT >= max(1,N). > \endverbatim > > \param[in,out] Q > \verbatim > Q is DOUBLE PRECISION array, dimension (LDQ,N) > On entry, if COMPQ = 'V', the matrix Q of Schur vectors. > On exit, if COMPQ = 'V', Q has been postmultiplied by the > orthogonal transformation matrix Z which reorders T. > If COMPQ = 'N', Q is not referenced. > \endverbatim > > \param[in] LDQ > \verbatim > LDQ is INTEGER > The leading dimension of the array Q. LDQ >= max(1,N). > \endverbatim > > \param[in,out] IFST > \verbatim > IFST is INTEGER > \endverbatim > > \param[in,out] ILST > \verbatim > ILST is INTEGER > > Specify the reordering of the diagonal blocks of T. > The block with row index IFST is moved to row ILST, by a > sequence of transpositions between adjacent blocks. > On exit, if IFST pointed on entry to the second row of a > 2-by-2 block, it is changed to point to the first row; ILST > always points to the first row of the block in its final > position (which may differ from its input value by +1 or -1). > 1 <= IFST <= N; 1 <= ILST <= N. > \endverbatim > > \param[out] WORK > \verbatim > WORK is DOUBLE PRECISION array, dimension (N) > \endverbatim > > \param[out] INFO > \verbatim > INFO is INTEGER > = 0: successful exit > < 0: if INFO = -i, the i-th argument had an illegal value > = 1: two adjacent blocks were too close to swap (the problem > is very ill-conditioned); T may have been partially > reordered, and ILST points to the first row of the > current position of the block being moved. > \endverbatim Authors: ======== > \author Univ. of Tennessee > \author Univ. of California Berkeley > \author Univ. of Colorado Denver > \author NAG Ltd. > \date November 2011 > \ingroup doubleOTHERcomputational ===================================================================== Subroutine */ int igraphdtrexc_(char *compq, integer *n, doublereal *t, integer * ldt, doublereal *q, integer *ldq, integer *ifst, integer *ilst, doublereal *work, integer *info) { /* System generated locals */ integer q_dim1, q_offset, t_dim1, t_offset, i__1; /* Local variables */ integer nbf, nbl, here; extern logical igraphlsame_(char *, char *); logical wantq; extern /* Subroutine */ int igraphdlaexc_(logical *, integer *, doublereal *, integer *, doublereal *, integer *, integer *, integer *, integer *, doublereal *, integer *), igraphxerbla_(char *, integer *, ftnlen); integer nbnext; /* -- LAPACK computational routine (version 3.4.0) -- -- LAPACK is a software package provided by Univ. of Tennessee, -- -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- November 2011 ===================================================================== Decode and test the input arguments. Parameter adjustments */ t_dim1 = *ldt; t_offset = 1 + t_dim1; t -= t_offset; q_dim1 = *ldq; q_offset = 1 + q_dim1; q -= q_offset; --work; /* Function Body */ *info = 0; wantq = igraphlsame_(compq, "V"); if (! wantq && ! igraphlsame_(compq, "N")) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*ldt < max(1,*n)) { *info = -4; } else if (*ldq < 1 || wantq && *ldq < max(1,*n)) { *info = -6; } else if (*ifst < 1 || *ifst > *n) { *info = -7; } else if (*ilst < 1 || *ilst > *n) { *info = -8; } if (*info != 0) { i__1 = -(*info); igraphxerbla_("DTREXC", &i__1, (ftnlen)6); return 0; } /* Quick return if possible */ if (*n <= 1) { return 0; } /* Determine the first row of specified block and find out it is 1 by 1 or 2 by 2. */ if (*ifst > 1) { if (t[*ifst + (*ifst - 1) * t_dim1] != 0.) { --(*ifst); } } nbf = 1; if (*ifst < *n) { if (t[*ifst + 1 + *ifst * t_dim1] != 0.) { nbf = 2; } } /* Determine the first row of the final block and find out it is 1 by 1 or 2 by 2. */ if (*ilst > 1) { if (t[*ilst + (*ilst - 1) * t_dim1] != 0.) { --(*ilst); } } nbl = 1; if (*ilst < *n) { if (t[*ilst + 1 + *ilst * t_dim1] != 0.) { nbl = 2; } } if (*ifst == *ilst) { return 0; } if (*ifst < *ilst) { /* Update ILST */ if (nbf == 2 && nbl == 1) { --(*ilst); } if (nbf == 1 && nbl == 2) { ++(*ilst); } here = *ifst; L10: /* Swap block with next one below */ if (nbf == 1 || nbf == 2) { /* Current block either 1 by 1 or 2 by 2 */ nbnext = 1; if (here + nbf + 1 <= *n) { if (t[here + nbf + 1 + (here + nbf) * t_dim1] != 0.) { nbnext = 2; } } igraphdlaexc_(&wantq, n, &t[t_offset], ldt, &q[q_offset], ldq, &here, & nbf, &nbnext, &work[1], info); if (*info != 0) { *ilst = here; return 0; } here += nbnext; /* Test if 2 by 2 block breaks into two 1 by 1 blocks */ if (nbf == 2) { if (t[here + 1 + here * t_dim1] == 0.) { nbf = 3; } } } else { /* Current block consists of two 1 by 1 blocks each of which must be swapped individually */ nbnext = 1; if (here + 3 <= *n) { if (t[here + 3 + (here + 2) * t_dim1] != 0.) { nbnext = 2; } } i__1 = here + 1; igraphdlaexc_(&wantq, n, &t[t_offset], ldt, &q[q_offset], ldq, &i__1, & c__1, &nbnext, &work[1], info); if (*info != 0) { *ilst = here; return 0; } if (nbnext == 1) { /* Swap two 1 by 1 blocks, no problems possible */ igraphdlaexc_(&wantq, n, &t[t_offset], ldt, &q[q_offset], ldq, & here, &c__1, &nbnext, &work[1], info); ++here; } else { /* Recompute NBNEXT in case 2 by 2 split */ if (t[here + 2 + (here + 1) * t_dim1] == 0.) { nbnext = 1; } if (nbnext == 2) { /* 2 by 2 Block did not split */ igraphdlaexc_(&wantq, n, &t[t_offset], ldt, &q[q_offset], ldq, & here, &c__1, &nbnext, &work[1], info); if (*info != 0) { *ilst = here; return 0; } here += 2; } else { /* 2 by 2 Block did split */ igraphdlaexc_(&wantq, n, &t[t_offset], ldt, &q[q_offset], ldq, & here, &c__1, &c__1, &work[1], info); i__1 = here + 1; igraphdlaexc_(&wantq, n, &t[t_offset], ldt, &q[q_offset], ldq, & i__1, &c__1, &c__1, &work[1], info); here += 2; } } } if (here < *ilst) { goto L10; } } else { here = *ifst; L20: /* Swap block with next one above */ if (nbf == 1 || nbf == 2) { /* Current block either 1 by 1 or 2 by 2 */ nbnext = 1; if (here >= 3) { if (t[here - 1 + (here - 2) * t_dim1] != 0.) { nbnext = 2; } } i__1 = here - nbnext; igraphdlaexc_(&wantq, n, &t[t_offset], ldt, &q[q_offset], ldq, &i__1, & nbnext, &nbf, &work[1], info); if (*info != 0) { *ilst = here; return 0; } here -= nbnext; /* Test if 2 by 2 block breaks into two 1 by 1 blocks */ if (nbf == 2) { if (t[here + 1 + here * t_dim1] == 0.) { nbf = 3; } } } else { /* Current block consists of two 1 by 1 blocks each of which must be swapped individually */ nbnext = 1; if (here >= 3) { if (t[here - 1 + (here - 2) * t_dim1] != 0.) { nbnext = 2; } } i__1 = here - nbnext; igraphdlaexc_(&wantq, n, &t[t_offset], ldt, &q[q_offset], ldq, &i__1, & nbnext, &c__1, &work[1], info); if (*info != 0) { *ilst = here; return 0; } if (nbnext == 1) { /* Swap two 1 by 1 blocks, no problems possible */ igraphdlaexc_(&wantq, n, &t[t_offset], ldt, &q[q_offset], ldq, & here, &nbnext, &c__1, &work[1], info); --here; } else { /* Recompute NBNEXT in case 2 by 2 split */ if (t[here + (here - 1) * t_dim1] == 0.) { nbnext = 1; } if (nbnext == 2) { /* 2 by 2 Block did not split */ i__1 = here - 1; igraphdlaexc_(&wantq, n, &t[t_offset], ldt, &q[q_offset], ldq, & i__1, &c__2, &c__1, &work[1], info); if (*info != 0) { *ilst = here; return 0; } here += -2; } else { /* 2 by 2 Block did split */ igraphdlaexc_(&wantq, n, &t[t_offset], ldt, &q[q_offset], ldq, & here, &c__1, &c__1, &work[1], info); i__1 = here - 1; igraphdlaexc_(&wantq, n, &t[t_offset], ldt, &q[q_offset], ldq, & i__1, &c__1, &c__1, &work[1], info); here += -2; } } } if (here > *ilst) { goto L20; } } *ilst = here; return 0; /* End of DTREXC */ } /* igraphdtrexc_ */