/* -- translated by f2c (version 20191129).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
/* Table of constant values */
static integer c__1 = 1;
static logical c_true = TRUE_;
static logical c_false = FALSE_;
/* > \brief \b DTRSNA
=========== DOCUMENTATION ===========
Online html documentation available at
http://www.netlib.org/lapack/explore-html/
> \htmlonly
> Download DTRSNA + dependencies
>
> [TGZ]
>
> [ZIP]
>
> [TXT]
> \endhtmlonly
Definition:
===========
SUBROUTINE DTRSNA( JOB, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
LDVR, S, SEP, MM, M, WORK, LDWORK, IWORK,
INFO )
CHARACTER HOWMNY, JOB
INTEGER INFO, LDT, LDVL, LDVR, LDWORK, M, MM, N
LOGICAL SELECT( * )
INTEGER IWORK( * )
DOUBLE PRECISION S( * ), SEP( * ), T( LDT, * ), VL( LDVL, * ),
$ VR( LDVR, * ), WORK( LDWORK, * )
> \par Purpose:
=============
>
> \verbatim
>
> DTRSNA estimates reciprocal condition numbers for specified
> eigenvalues and/or right eigenvectors of a real upper
> quasi-triangular matrix T (or of any matrix Q*T*Q**T with Q
> orthogonal).
>
> T must be in Schur canonical form (as returned by DHSEQR), that is,
> block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each
> 2-by-2 diagonal block has its diagonal elements equal and its
> off-diagonal elements of opposite sign.
> \endverbatim
Arguments:
==========
> \param[in] JOB
> \verbatim
> JOB is CHARACTER*1
> Specifies whether condition numbers are required for
> eigenvalues (S) or eigenvectors (SEP):
> = 'E': for eigenvalues only (S);
> = 'V': for eigenvectors only (SEP);
> = 'B': for both eigenvalues and eigenvectors (S and SEP).
> \endverbatim
>
> \param[in] HOWMNY
> \verbatim
> HOWMNY is CHARACTER*1
> = 'A': compute condition numbers for all eigenpairs;
> = 'S': compute condition numbers for selected eigenpairs
> specified by the array SELECT.
> \endverbatim
>
> \param[in] SELECT
> \verbatim
> SELECT is LOGICAL array, dimension (N)
> If HOWMNY = 'S', SELECT specifies the eigenpairs for which
> condition numbers are required. To select condition numbers
> for the eigenpair corresponding to a real eigenvalue w(j),
> SELECT(j) must be set to .TRUE.. To select condition numbers
> corresponding to a complex conjugate pair of eigenvalues w(j)
> and w(j+1), either SELECT(j) or SELECT(j+1) or both, must be
> set to .TRUE..
> If HOWMNY = 'A', SELECT is not referenced.
> \endverbatim
>
> \param[in] N
> \verbatim
> N is INTEGER
> The order of the matrix T. N >= 0.
> \endverbatim
>
> \param[in] T
> \verbatim
> T is DOUBLE PRECISION array, dimension (LDT,N)
> The upper quasi-triangular matrix T, in Schur canonical form.
> \endverbatim
>
> \param[in] LDT
> \verbatim
> LDT is INTEGER
> The leading dimension of the array T. LDT >= max(1,N).
> \endverbatim
>
> \param[in] VL
> \verbatim
> VL is DOUBLE PRECISION array, dimension (LDVL,M)
> If JOB = 'E' or 'B', VL must contain left eigenvectors of T
> (or of any Q*T*Q**T with Q orthogonal), corresponding to the
> eigenpairs specified by HOWMNY and SELECT. The eigenvectors
> must be stored in consecutive columns of VL, as returned by
> DHSEIN or DTREVC.
> If JOB = 'V', VL is not referenced.
> \endverbatim
>
> \param[in] LDVL
> \verbatim
> LDVL is INTEGER
> The leading dimension of the array VL.
> LDVL >= 1; and if JOB = 'E' or 'B', LDVL >= N.
> \endverbatim
>
> \param[in] VR
> \verbatim
> VR is DOUBLE PRECISION array, dimension (LDVR,M)
> If JOB = 'E' or 'B', VR must contain right eigenvectors of T
> (or of any Q*T*Q**T with Q orthogonal), corresponding to the
> eigenpairs specified by HOWMNY and SELECT. The eigenvectors
> must be stored in consecutive columns of VR, as returned by
> DHSEIN or DTREVC.
> If JOB = 'V', VR is not referenced.
> \endverbatim
>
> \param[in] LDVR
> \verbatim
> LDVR is INTEGER
> The leading dimension of the array VR.
> LDVR >= 1; and if JOB = 'E' or 'B', LDVR >= N.
> \endverbatim
>
> \param[out] S
> \verbatim
> S is DOUBLE PRECISION array, dimension (MM)
> If JOB = 'E' or 'B', the reciprocal condition numbers of the
> selected eigenvalues, stored in consecutive elements of the
> array. For a complex conjugate pair of eigenvalues two
> consecutive elements of S are set to the same value. Thus
> S(j), SEP(j), and the j-th columns of VL and VR all
> correspond to the same eigenpair (but not in general the
> j-th eigenpair, unless all eigenpairs are selected).
> If JOB = 'V', S is not referenced.
> \endverbatim
>
> \param[out] SEP
> \verbatim
> SEP is DOUBLE PRECISION array, dimension (MM)
> If JOB = 'V' or 'B', the estimated reciprocal condition
> numbers of the selected eigenvectors, stored in consecutive
> elements of the array. For a complex eigenvector two
> consecutive elements of SEP are set to the same value. If
> the eigenvalues cannot be reordered to compute SEP(j), SEP(j)
> is set to 0; this can only occur when the true value would be
> very small anyway.
> If JOB = 'E', SEP is not referenced.
> \endverbatim
>
> \param[in] MM
> \verbatim
> MM is INTEGER
> The number of elements in the arrays S (if JOB = 'E' or 'B')
> and/or SEP (if JOB = 'V' or 'B'). MM >= M.
> \endverbatim
>
> \param[out] M
> \verbatim
> M is INTEGER
> The number of elements of the arrays S and/or SEP actually
> used to store the estimated condition numbers.
> If HOWMNY = 'A', M is set to N.
> \endverbatim
>
> \param[out] WORK
> \verbatim
> WORK is DOUBLE PRECISION array, dimension (LDWORK,N+6)
> If JOB = 'E', WORK is not referenced.
> \endverbatim
>
> \param[in] LDWORK
> \verbatim
> LDWORK is INTEGER
> The leading dimension of the array WORK.
> LDWORK >= 1; and if JOB = 'V' or 'B', LDWORK >= N.
> \endverbatim
>
> \param[out] IWORK
> \verbatim
> IWORK is INTEGER array, dimension (2*(N-1))
> If JOB = 'E', IWORK is not referenced.
> \endverbatim
>
> \param[out] INFO
> \verbatim
> INFO is INTEGER
> = 0: successful exit
> < 0: if INFO = -i, the i-th argument had an illegal value
> \endverbatim
Authors:
========
> \author Univ. of Tennessee
> \author Univ. of California Berkeley
> \author Univ. of Colorado Denver
> \author NAG Ltd.
> \date November 2011
> \ingroup doubleOTHERcomputational
> \par Further Details:
=====================
>
> \verbatim
>
> The reciprocal of the condition number of an eigenvalue lambda is
> defined as
>
> S(lambda) = |v**T*u| / (norm(u)*norm(v))
>
> where u and v are the right and left eigenvectors of T corresponding
> to lambda; v**T denotes the transpose of v, and norm(u)
> denotes the Euclidean norm. These reciprocal condition numbers always
> lie between zero (very badly conditioned) and one (very well
> conditioned). If n = 1, S(lambda) is defined to be 1.
>
> An approximate error bound for a computed eigenvalue W(i) is given by
>
> EPS * norm(T) / S(i)
>
> where EPS is the machine precision.
>
> The reciprocal of the condition number of the right eigenvector u
> corresponding to lambda is defined as follows. Suppose
>
> T = ( lambda c )
> ( 0 T22 )
>
> Then the reciprocal condition number is
>
> SEP( lambda, T22 ) = sigma-min( T22 - lambda*I )
>
> where sigma-min denotes the smallest singular value. We approximate
> the smallest singular value by the reciprocal of an estimate of the
> one-norm of the inverse of T22 - lambda*I. If n = 1, SEP(1) is
> defined to be abs(T(1,1)).
>
> An approximate error bound for a computed right eigenvector VR(i)
> is given by
>
> EPS * norm(T) / SEP(i)
> \endverbatim
>
=====================================================================
Subroutine */ int igraphdtrsna_(char *job, char *howmny, logical *select,
integer *n, doublereal *t, integer *ldt, doublereal *vl, integer *
ldvl, doublereal *vr, integer *ldvr, doublereal *s, doublereal *sep,
integer *mm, integer *m, doublereal *work, integer *ldwork, integer *
iwork, integer *info)
{
/* System generated locals */
integer t_dim1, t_offset, vl_dim1, vl_offset, vr_dim1, vr_offset,
work_dim1, work_offset, i__1, i__2;
doublereal d__1, d__2;
/* Builtin functions */
double sqrt(doublereal);
/* Local variables */
integer i__, j, k, n2;
doublereal cs;
integer nn, ks;
doublereal sn, mu, eps, est;
integer kase;
doublereal cond;
extern doublereal igraphddot_(integer *, doublereal *, integer *, doublereal *,
integer *);
logical pair;
integer ierr;
doublereal dumm, prod;
integer ifst;
doublereal lnrm;
integer ilst;
doublereal rnrm;
extern doublereal igraphdnrm2_(integer *, doublereal *, integer *);
doublereal prod1, prod2, scale, delta;
extern logical igraphlsame_(char *, char *);
integer isave[3];
logical wants;
doublereal dummy[1];
extern /* Subroutine */ int igraphdlacn2_(integer *, doublereal *, doublereal *,
integer *, doublereal *, integer *, integer *);
extern doublereal igraphdlapy2_(doublereal *, doublereal *);
extern /* Subroutine */ int igraphdlabad_(doublereal *, doublereal *);
extern doublereal igraphdlamch_(char *);
extern /* Subroutine */ int igraphdlacpy_(char *, integer *, integer *,
doublereal *, integer *, doublereal *, integer *),
igraphxerbla_(char *, integer *, ftnlen);
doublereal bignum;
logical wantbh;
extern /* Subroutine */ int igraphdlaqtr_(logical *, logical *, integer *,
doublereal *, integer *, doublereal *, doublereal *, doublereal *,
doublereal *, doublereal *, integer *), igraphdtrexc_(char *, integer *
, doublereal *, integer *, doublereal *, integer *, integer *,
integer *, doublereal *, integer *);
logical somcon;
doublereal smlnum;
logical wantsp;
/* -- LAPACK computational routine (version 3.4.0) --
-- LAPACK is a software package provided by Univ. of Tennessee, --
-- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
November 2011
=====================================================================
Decode and test the input parameters
Parameter adjustments */
--select;
t_dim1 = *ldt;
t_offset = 1 + t_dim1;
t -= t_offset;
vl_dim1 = *ldvl;
vl_offset = 1 + vl_dim1;
vl -= vl_offset;
vr_dim1 = *ldvr;
vr_offset = 1 + vr_dim1;
vr -= vr_offset;
--s;
--sep;
work_dim1 = *ldwork;
work_offset = 1 + work_dim1;
work -= work_offset;
--iwork;
/* Function Body */
wantbh = igraphlsame_(job, "B");
wants = igraphlsame_(job, "E") || wantbh;
wantsp = igraphlsame_(job, "V") || wantbh;
somcon = igraphlsame_(howmny, "S");
*info = 0;
if (! wants && ! wantsp) {
*info = -1;
} else if (! igraphlsame_(howmny, "A") && ! somcon) {
*info = -2;
} else if (*n < 0) {
*info = -4;
} else if (*ldt < max(1,*n)) {
*info = -6;
} else if (*ldvl < 1 || wants && *ldvl < *n) {
*info = -8;
} else if (*ldvr < 1 || wants && *ldvr < *n) {
*info = -10;
} else {
/* Set M to the number of eigenpairs for which condition numbers
are required, and test MM. */
if (somcon) {
*m = 0;
pair = FALSE_;
i__1 = *n;
for (k = 1; k <= i__1; ++k) {
if (pair) {
pair = FALSE_;
} else {
if (k < *n) {
if (t[k + 1 + k * t_dim1] == 0.) {
if (select[k]) {
++(*m);
}
} else {
pair = TRUE_;
if (select[k] || select[k + 1]) {
*m += 2;
}
}
} else {
if (select[*n]) {
++(*m);
}
}
}
/* L10: */
}
} else {
*m = *n;
}
if (*mm < *m) {
*info = -13;
} else if (*ldwork < 1 || wantsp && *ldwork < *n) {
*info = -16;
}
}
if (*info != 0) {
i__1 = -(*info);
igraphxerbla_("DTRSNA", &i__1, (ftnlen)6);
return 0;
}
/* Quick return if possible */
if (*n == 0) {
return 0;
}
if (*n == 1) {
if (somcon) {
if (! select[1]) {
return 0;
}
}
if (wants) {
s[1] = 1.;
}
if (wantsp) {
sep[1] = (d__1 = t[t_dim1 + 1], abs(d__1));
}
return 0;
}
/* Get machine constants */
eps = igraphdlamch_("P");
smlnum = igraphdlamch_("S") / eps;
bignum = 1. / smlnum;
igraphdlabad_(&smlnum, &bignum);
ks = 0;
pair = FALSE_;
i__1 = *n;
for (k = 1; k <= i__1; ++k) {
/* Determine whether T(k,k) begins a 1-by-1 or 2-by-2 block. */
if (pair) {
pair = FALSE_;
goto L60;
} else {
if (k < *n) {
pair = t[k + 1 + k * t_dim1] != 0.;
}
}
/* Determine whether condition numbers are required for the k-th
eigenpair. */
if (somcon) {
if (pair) {
if (! select[k] && ! select[k + 1]) {
goto L60;
}
} else {
if (! select[k]) {
goto L60;
}
}
}
++ks;
if (wants) {
/* Compute the reciprocal condition number of the k-th
eigenvalue. */
if (! pair) {
/* Real eigenvalue. */
prod = igraphddot_(n, &vr[ks * vr_dim1 + 1], &c__1, &vl[ks *
vl_dim1 + 1], &c__1);
rnrm = igraphdnrm2_(n, &vr[ks * vr_dim1 + 1], &c__1);
lnrm = igraphdnrm2_(n, &vl[ks * vl_dim1 + 1], &c__1);
s[ks] = abs(prod) / (rnrm * lnrm);
} else {
/* Complex eigenvalue. */
prod1 = igraphddot_(n, &vr[ks * vr_dim1 + 1], &c__1, &vl[ks *
vl_dim1 + 1], &c__1);
prod1 += igraphddot_(n, &vr[(ks + 1) * vr_dim1 + 1], &c__1, &vl[(ks
+ 1) * vl_dim1 + 1], &c__1);
prod2 = igraphddot_(n, &vl[ks * vl_dim1 + 1], &c__1, &vr[(ks + 1) *
vr_dim1 + 1], &c__1);
prod2 -= igraphddot_(n, &vl[(ks + 1) * vl_dim1 + 1], &c__1, &vr[ks *
vr_dim1 + 1], &c__1);
d__1 = igraphdnrm2_(n, &vr[ks * vr_dim1 + 1], &c__1);
d__2 = igraphdnrm2_(n, &vr[(ks + 1) * vr_dim1 + 1], &c__1);
rnrm = igraphdlapy2_(&d__1, &d__2);
d__1 = igraphdnrm2_(n, &vl[ks * vl_dim1 + 1], &c__1);
d__2 = igraphdnrm2_(n, &vl[(ks + 1) * vl_dim1 + 1], &c__1);
lnrm = igraphdlapy2_(&d__1, &d__2);
cond = igraphdlapy2_(&prod1, &prod2) / (rnrm * lnrm);
s[ks] = cond;
s[ks + 1] = cond;
}
}
if (wantsp) {
/* Estimate the reciprocal condition number of the k-th
eigenvector.
Copy the matrix T to the array WORK and swap the diagonal
block beginning at T(k,k) to the (1,1) position. */
igraphdlacpy_("Full", n, n, &t[t_offset], ldt, &work[work_offset],
ldwork);
ifst = k;
ilst = 1;
igraphdtrexc_("No Q", n, &work[work_offset], ldwork, dummy, &c__1, &
ifst, &ilst, &work[(*n + 1) * work_dim1 + 1], &ierr);
if (ierr == 1 || ierr == 2) {
/* Could not swap because blocks not well separated */
scale = 1.;
est = bignum;
} else {
/* Reordering successful */
if (work[work_dim1 + 2] == 0.) {
/* Form C = T22 - lambda*I in WORK(2:N,2:N). */
i__2 = *n;
for (i__ = 2; i__ <= i__2; ++i__) {
work[i__ + i__ * work_dim1] -= work[work_dim1 + 1];
/* L20: */
}
n2 = 1;
nn = *n - 1;
} else {
/* Triangularize the 2 by 2 block by unitary
transformation U = [ cs i*ss ]
[ i*ss cs ].
such that the (1,1) position of WORK is complex
eigenvalue lambda with positive imaginary part. (2,2)
position of WORK is the complex eigenvalue lambda
with negative imaginary part. */
mu = sqrt((d__1 = work[(work_dim1 << 1) + 1], abs(d__1)))
* sqrt((d__2 = work[work_dim1 + 2], abs(d__2)));
delta = igraphdlapy2_(&mu, &work[work_dim1 + 2]);
cs = mu / delta;
sn = -work[work_dim1 + 2] / delta;
/* Form
C**T = WORK(2:N,2:N) + i*[rwork(1) ..... rwork(n-1) ]
[ mu ]
[ .. ]
[ .. ]
[ mu ]
where C**T is transpose of matrix C,
and RWORK is stored starting in the N+1-st column of
WORK. */
i__2 = *n;
for (j = 3; j <= i__2; ++j) {
work[j * work_dim1 + 2] = cs * work[j * work_dim1 + 2]
;
work[j + j * work_dim1] -= work[work_dim1 + 1];
/* L30: */
}
work[(work_dim1 << 1) + 2] = 0.;
work[(*n + 1) * work_dim1 + 1] = mu * 2.;
i__2 = *n - 1;
for (i__ = 2; i__ <= i__2; ++i__) {
work[i__ + (*n + 1) * work_dim1] = sn * work[(i__ + 1)
* work_dim1 + 1];
/* L40: */
}
n2 = 2;
nn = *n - 1 << 1;
}
/* Estimate norm(inv(C**T)) */
est = 0.;
kase = 0;
L50:
igraphdlacn2_(&nn, &work[(*n + 2) * work_dim1 + 1], &work[(*n + 4) *
work_dim1 + 1], &iwork[1], &est, &kase, isave);
if (kase != 0) {
if (kase == 1) {
if (n2 == 1) {
/* Real eigenvalue: solve C**T*x = scale*c. */
i__2 = *n - 1;
igraphdlaqtr_(&c_true, &c_true, &i__2, &work[(work_dim1
<< 1) + 2], ldwork, dummy, &dumm, &scale,
&work[(*n + 4) * work_dim1 + 1], &work[(*
n + 6) * work_dim1 + 1], &ierr);
} else {
/* Complex eigenvalue: solve
C**T*(p+iq) = scale*(c+id) in real arithmetic. */
i__2 = *n - 1;
igraphdlaqtr_(&c_true, &c_false, &i__2, &work[(
work_dim1 << 1) + 2], ldwork, &work[(*n +
1) * work_dim1 + 1], &mu, &scale, &work[(*
n + 4) * work_dim1 + 1], &work[(*n + 6) *
work_dim1 + 1], &ierr);
}
} else {
if (n2 == 1) {
/* Real eigenvalue: solve C*x = scale*c. */
i__2 = *n - 1;
igraphdlaqtr_(&c_false, &c_true, &i__2, &work[(
work_dim1 << 1) + 2], ldwork, dummy, &
dumm, &scale, &work[(*n + 4) * work_dim1
+ 1], &work[(*n + 6) * work_dim1 + 1], &
ierr);
} else {
/* Complex eigenvalue: solve
C*(p+iq) = scale*(c+id) in real arithmetic. */
i__2 = *n - 1;
igraphdlaqtr_(&c_false, &c_false, &i__2, &work[(
work_dim1 << 1) + 2], ldwork, &work[(*n +
1) * work_dim1 + 1], &mu, &scale, &work[(*
n + 4) * work_dim1 + 1], &work[(*n + 6) *
work_dim1 + 1], &ierr);
}
}
goto L50;
}
}
sep[ks] = scale / max(est,smlnum);
if (pair) {
sep[ks + 1] = sep[ks];
}
}
if (pair) {
++ks;
}
L60:
;
}
return 0;
/* End of DTRSNA */
} /* igraphdtrsna_ */