#![cfg_attr(not(any(test, feature = "std")), no_std)] #![doc(html_root_url = "https://docs.rs/importunate/0.1.2")] #![deny(missing_docs)] #![deny(warnings, dead_code, unused_imports, unused_mut)] #![warn(clippy::pedantic)] #![allow(clippy::cast_possible_truncation)] //! [![github]](https://github.com/wainwrightmark/importunate) [![crates-io]](https://crates.io/crates/importunate) [![docs-rs]](https://docs.rs/importunate) //! //! [github]: https://img.shields.io/badge/github-8da0cb?style=for-the-badge&labelColor=555555&logo=github //! [crates-io]: https://img.shields.io/badge/crates.io-fc8d62?style=for-the-badge&labelColor=555555&logo=rust //! [docs-rs]: https://img.shields.io/badge/docs.rs-66c2a5?style=for-the-badge&labelColor=555555&logoColor=white&logo= //! //!
//! //! Methods for choosing random elements from an iterator. //! //!
//! //! ## Usage //! //! ``` //! use importunate::*; //! //! let arr1 = [2,0,1,3]; //! let mut arr2 = ["zero", "one", "two", "three"]; //! let perm = Permutation::::calculate_unchecked(arr1, |&x|x); //! perm.apply(&mut arr2); //! //! assert_eq!(arr2,["two","zero", "one", "three"] ); //! //! //! ``` //! //! ## Readme Docs //! //! You can find the crate's readme documentation on the //! [crates.io] page, or alternatively in the [`README.md`] file on the GitHub project repo. //! //! [crates.io]: https://crates.io/crates/importunate //! [`README.md`]: https://github.com/wainwrightmark/importunate // TODO // documentation // optional rand // errors mod cyclic_generator; mod decomposer; /// Inner types that Permutations can use pub mod inner; mod swaps_iterator; #[cfg(any(test, feature = "std"))] /// Allows you to solve permutations - finding the shortest sequence of permutations that lead to it pub mod solver; use core::fmt::Display; use core::hash::Hash; use core::{cmp::Ordering, fmt::Debug}; use inner::Inner; use num_integer::Integer; #[cfg(any(test, feature = "serde"))] use serde::{Deserialize, Serialize}; /// A permutation of a fixed length array #[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, Ord, PartialOrd)] #[must_use] #[cfg_attr(any(test, feature = "serde"), derive(Serialize), serde(transparent))] pub struct Permutation(I); #[cfg(any(test, feature = "serde"))] impl<'de, I: Inner + Deserialize<'de>, const ELEMENTS: usize> Deserialize<'de> for Permutation { fn deserialize(deserializer: D) -> Result where D: serde::Deserializer<'de>, { debug_assert!(ELEMENTS <= I::MAX_ELEMENTS); let i = I::deserialize(deserializer)?; if i > Self::get_last().0 { return Err(serde::de::Error::custom("Permutation out of range")); } Ok(Self(i)) } } #[cfg(any(test, feature = "arbitrary"))] use arbitrary::Arbitrary; use swaps_iterator::SwapsIterator; #[cfg(any(test, feature = "arbitrary"))] impl<'a, I: Inner, const ELEMENTS: usize> Arbitrary<'a> for Permutation { fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result { debug_assert!(ELEMENTS <= I::MAX_ELEMENTS); let bytes = u.bytes(Self::REQUIRED_BYTES)?; let inner = I::from_le_byte_array(bytes); let inner = inner.mod_floor(&Self::get_last().0); Ok(Self(inner)) } fn arbitrary_take_rest(mut u: arbitrary::Unstructured<'a>) -> arbitrary::Result { debug_assert!(ELEMENTS <= I::MAX_ELEMENTS); Self::arbitrary(&mut u) } fn size_hint(_depth: usize) -> (usize, Option) { (Self::REQUIRED_BYTES, Some(Self::REQUIRED_BYTES)) } } impl Default for Permutation { fn default() -> Self { debug_assert!(ELEMENTS <= I::MAX_ELEMENTS); Self(Default::default()) } } impl Display for Permutation { fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { if ELEMENTS <= 10 { write!(f, "{:01?}", self.get_array()) } else { write!(f, "{:02?}", self.get_array()) } } } impl Permutation { /// The inner value of this permutation pub fn inner(&self) -> I { self.0 } /// Create the permuation associated with a particular number, if it is in range. pub fn try_from_inner(i: &I) -> Option { if *i <= I::get_factorial(ELEMENTS) { Some(Self(*i)) } else { None } } /// Apply this permutation to an array, reordering the first `ELEMENTS` elements pub fn apply(&self, arr: &mut [T]) { for (i, swap) in self.swaps().enumerate() { arr.swap(i, usize::from(swap) + i); } } /// Apply the inverse of this permutation to an array, reordering the first `ELEMENTS` elements pub fn apply_inverse(&self, arr: &mut [T]) { for (i, swap) in self.swaps_array().into_iter().enumerate().rev() { arr.swap(i, usize::from(swap) + i); } } /// The range of all possible permutations of this number of elements #[must_use] pub fn all() -> impl DoubleEndedIterator { let range = I::get_permutation_range(ELEMENTS); range.map(|x| Self(x)) } /// Is this the default permutation which does not reorder elements pub fn is_default(&self) -> bool { self.0.is_zero() } /// The swaps represented by this permutation /// ``` /// let permutation = importunate::Permutation::::try_from_inner(&42).unwrap(); /// let mut arr = [0,1,2,3,4]; /// /// for (i, swap) in permutation.swaps().enumerate() { /// arr.swap(i, usize::from(swap) + i); /// } /// /// assert_eq!(arr, [2, 1, 4, 3, 0]) /// ``` pub fn swaps(&self) -> SwapsIterator { SwapsIterator::new(self) } /// The array of swaps represented by this permutation /// ``` /// let permutation = importunate::Permutation::::try_from_inner(&42).unwrap(); /// let mut arr = [0,1,2,3,4]; /// /// for (i, swap) in permutation.swaps_array().into_iter().enumerate() { /// arr.swap(i, usize::from(swap) + i); /// } /// /// assert_eq!(arr, [2, 1, 4, 3, 0]) /// ``` pub fn swaps_array(&self) -> [u8; ELEMENTS] { let mut swaps = [0; ELEMENTS]; for (i, swap) in self.swaps().enumerate() { swaps[i] = swap; } swaps } fn from_swaps(swaps: impl Iterator) -> Self { let mut inner: I = I::zero(); let mut mult: I = I::one(); for (i, swap) in swaps.enumerate() { let r = mult * swap.into(); inner = inner + r; mult = mult * (ELEMENTS - i).try_into().ok().unwrap(); } Self(inner) } fn test_unique(iterator: impl Iterator) -> bool { let mut test = 0u64; for x in iterator.take(ELEMENTS) { test |= 1 << x; } test.count_ones() as usize == ELEMENTS } /// Calculate the permutation for any list, even one containing duplicates. /// There is a performance penalty for using this - it will make n * n comparisons pub fn calculate_incomplete(slice: &[T]) -> Self { let mut arr = Self::DEFAULT_ARRAY; for (index, element) in slice.iter().take(ELEMENTS).enumerate() { let mut c = 0; for (jindex, el) in slice.iter().take(ELEMENTS).enumerate() { match element.cmp(el) { Ordering::Greater => c += 1, Ordering::Equal => { if index > jindex { c += 1; } } Ordering::Less => {} } } arr[index] = c; } Self::calculate_unchecked(arr, |&x| x) } /// *DO NOT USE THIS FUNCTION ON USER INPUT* /// Calculate the permutation of an array. /// # Panics /// /// This will panic or loop forever if the array's elements contain duplicates or elements outsize `0..ELEMENTS` pub fn calculate_unchecked u8>(mut arr: [T; ELEMENTS], mut f: F) -> Self { debug_assert!(Self::test_unique(arr.iter().map(&mut f))); let mut slot_multiplier: I = I::one(); let mut inner: I = I::zero(); for index in 0..(ELEMENTS as u8) { let mut swap_element = f(&arr[usize::from(index)]); 'inner: loop { match swap_element.checked_sub(index) { None => unreachable!(), //Array is invalid Some(0) => break 'inner, Some(diff) => { swap_element = f(&arr[usize::from(swap_element)]); if swap_element == index { let amount = f(&arr[usize::from(index)]) - index; arr.swap(index.into(), (index + diff).into()); let change = slot_multiplier * (I::from(amount)); inner = inner + change; break 'inner; } } } } slot_multiplier = slot_multiplier * I::from((ELEMENTS as u8) - index); } Self(inner) } /// Calculate the permutation of an array /// This will return `None` if the array's elements contain duplicates or elements outsize `0..ELEMENTS` pub fn try_calculate u8>(arr: [T; ELEMENTS], mut f: F) -> Option { if !Self::test_unique(arr.iter().map(&mut f)) { return None; } Some(Self::calculate_unchecked(arr, f)) } /// Get the element at the given index of the permutation pub fn element_at_index T>(&self, new_index: u8, f: F) -> T { debug_assert!((new_index as usize) < ELEMENTS); let mut swaps = [0; ELEMENTS]; for (i, swap) in self.swaps().enumerate().take((new_index + 1) as usize) { swaps[i] = swap; } let old_index = Self::element_at_index_from_swaps(&swaps, new_index); f(old_index) } fn element_at_index_from_swaps(swaps: &[u8], index: u8) -> u8 { let mut current = swaps[usize::from(index)] + index; for j in (0..index).rev() { if swaps[usize::from(j)] + j == current { current = j; } } current } /// Get the new index of the given element from the permutation pub fn index_of u8>(&self, element: &T, f: F) -> u8 { let old_index = f(element); debug_assert!(usize::from(old_index) < ELEMENTS); Self::index_of_element_from_swaps(self.swaps(), old_index) } fn index_of_element_from_swaps(swaps_iter: impl Iterator, mut index: u8) -> u8 { for (j, diff) in swaps_iter.enumerate() { let j = j as u8; match j.cmp(&index) { Ordering::Less => { if j + diff == index { return j; } } Ordering::Equal => { index += diff; } Ordering::Greater => { break; } } } index } const DEFAULT_ARRAY: [u8; ELEMENTS] = { let mut arr = [0u8; ELEMENTS]; let mut i: u8 = 0; while i < (ELEMENTS as u8) { arr[i as usize] = i; i += 1; } arr }; /// Get the complete array of this permutation's elements pub fn get_array(&self) -> [u8; ELEMENTS] { let mut arr = Self::DEFAULT_ARRAY; self.apply(&mut arr); arr } /// Write this permutation to a byte array /// Panics if `BYTES` is too small for permutations of this many elements /// See `REQUIRED_BYTES` pub fn to_le_byte_array(&self) -> [u8; BYTES] { debug_assert!(BYTES >= Self::REQUIRED_BYTES); self.0.to_le_byte_array() } /// Read this permutation from a byte array /// Panics if `BYTES` is too small for permutations of this many elements /// See `REQUIRED_BYTES` #[must_use] pub fn try_from_le_byte_array(bytes: &[u8]) -> Option { debug_assert!(bytes.len() >= Self::REQUIRED_BYTES); let inner = I::from_le_byte_array(bytes); if inner <= Self::get_last().0 { Self(inner).into() } else { None } } /// The number of bytes required to store a permutation of this many elements pub const REQUIRED_BYTES: usize = { match ELEMENTS { 0..=5 => 1, 6..=8 => 2, 9..=10 => 3, 11..=12 => 4, 13..=14 => 5, 15..=16 => 6, 17..=18 => 7, 19..=20 => 8, 21..=22 => 9, 23..=24 => 10, 25 => 11, 26..=27 => 12, 28..=29 => 13, 30 => 14, 31..=32 => 15, 33..=34 => 16, _ => { panic!("ELEMENTS is too big") } } }; /// Invert this permutation /// This produces the permutation that will reorder the array back to its original order pub fn invert(&self) -> Self { let mut swaps = self.swaps_array(); let mut is_different = false; for i in (0..(ELEMENTS as u8)).rev() { let swap: u8 = swaps[usize::from(i)]; if swap != 0 { let i2 = i + swap; for j in (0..i).rev() { if swaps[usize::from(j)] + j == i { swaps[usize::from(j)] = i2 - j; is_different = true; } else if swaps[usize::from(j)] + j == i2 { swaps[usize::from(j)] = i - j; is_different = true; } } } } if !is_different { //A great many permutations are their own inverses, so we can skip calculating if that is the case return *self; } Self::from_swaps(swaps.into_iter()) } /// Gets the permutation of this many elements with the highest inner value pub fn get_last() -> Self { let inner = I::get_factorial(ELEMENTS); Self(inner - I::one()) } /// Combine this permutation with another. Producing a permutation equivalent to performing this and then the other. /// Note that this operation is neither commutative nor associative pub fn combine(&self, rhs: &Self) -> Self { let mut arr = self.get_array(); rhs.apply(&mut arr); Self::calculate_unchecked(arr, |&x| x) } /// Gets the reverse permutation for this number of elements. /// ``` /// use importunate::Permutation; /// assert_eq!(Permutation::::reverse().get_array(), [3,2,1,0]); /// assert_eq!(Permutation::::reverse().get_array(), [4,3,2,1,0]); /// ``` pub fn reverse() -> Self { let mut swaps = [0; ELEMENTS]; for (i, swap) in swaps.iter_mut().enumerate().take(ELEMENTS / 2) { *swap = (ELEMENTS - ((2 * i) + 1)) as u8; } Self::from_swaps(swaps.into_iter()) } /// Gets the rotate right permutation for this number of elements. /// ``` /// use importunate::Permutation; /// assert_eq!(Permutation::::rotate_right().get_array(), [3,0,1,2]); /// ``` pub fn rotate_right() -> Self { let mut swaps = [0; ELEMENTS]; for (i, swap) in swaps.iter_mut().enumerate().take(ELEMENTS) { *swap = (ELEMENTS - (i + 1)) as u8; } Self::from_swaps(swaps.into_iter()) } /// Gets the rotate left permutation for this number of elements. /// ``` /// use importunate::Permutation; /// assert_eq!(Permutation::::rotate_left().get_array(), [1,2,3,0]); /// ``` pub fn rotate_left() -> Self { let mut swaps = [1; ELEMENTS]; swaps[ELEMENTS - 1] = 0; Self::from_swaps(swaps.into_iter()) } /// Rotate right n times /// ``` /// use importunate::Permutation; /// assert_eq!(Permutation::::rotate_n(2).get_array(), [3,4,0,1,2]); /// ``` pub fn rotate_n(n: usize) -> Self { let rhs = Self::rotate_right(); let mut p = Self::default(); for _ in 0..n { p = p.combine(&rhs); } p } /// Gets the permutation corresponding to interleaving elements. /// This is the inverse of the pile shuffle /// ``` /// use importunate::Permutation; /// assert_eq!(Permutation::::interleave(3).get_array(), [0, 5, 10, 1, 6, 11, 2, 7, 12, 3, 8, 4, 9]); /// ``` pub fn interleave(groups: u8) -> Self { debug_assert!(groups >= 1); let (div, rem) = (ELEMENTS as u8).div_rem(&groups); let group_size = if rem == 0 { div } else { div + 1 }; let piles = group_size; debug_assert!(piles >= 1); let mut arr = [0u8; ELEMENTS]; let mut current = 0; let mut pile_number = 0; for element in &mut arr { *element = current; current += piles; if current >= ELEMENTS as u8 { pile_number += 1; current = pile_number; } } Self::calculate_unchecked(arr, |&x| x) } /// Generate the cycle with this permutation as the operator pub fn generate_cycle(self) -> impl Iterator { cyclic_generator::CyclicGenerator::from(self) } /// Decompose this permutation into disjoint cycles pub fn decompose(self) -> impl Iterator { decomposer::Decomposer::from(self) } // /// The slow (but oh so elegant) version of combine // pub fn combine_2(&self, rhs: &Self) -> Self { // let mut left_swaps = self.swaps_array(); // for (i, diff) in rhs.swaps().enumerate() { // Self::swap_swaps(&mut left_swaps[i..], diff); // } // Self::from_swaps(left_swaps.into_iter()) // } // fn swap_swaps(mut swaps_arr: &mut [u8], mut diff: u8) { // while diff > 0 { // let index_of_zero = // Self::index_of_element_from_swaps(swaps_arr.iter().map(|x| *x), 0); // let element_at_n = Self::element_at_index_from_swaps(swaps_arr, diff); // swaps_arr[0] = element_at_n; // if index_of_zero > 0 { // let min = diff.min(index_of_zero) as usize; // diff = diff.abs_diff(index_of_zero); // swaps_arr = &mut swaps_arr[min..]; // } else { // break; // } // } // } } #[cfg(test)] mod tests { use crate::Permutation; use arbitrary::*; use arbtest::{arbitrary::{self, Unstructured}, arbtest}; use itertools::Itertools; use ntest::test_case; use std::collections::HashSet; // pub fn test_arbitrary(){ // type Perm = Permutation; // ::arbitrary(u) // } #[test] pub fn test_decompose() { type Perm = Permutation; for perm in Perm::all() { let decomposed = perm.decompose().collect_vec(); let product_left = decomposed.iter().fold(Perm::default(), |x, b| x.combine(b)); let product_right = decomposed .iter() .fold(Perm::default(), |x, b| b.combine(&x)); println!( "{:?}: {:?}", perm.get_array(), decomposed .iter() .map(|x| format!("({:?})", x.get_array())) .join("") ); assert_eq!(perm, product_left); assert_eq!(perm, product_right); } } #[test] pub fn test_display() { let perm5 = Permutation::::rotate_right(); assert_eq!(perm5.to_string(), "[4, 0, 1, 2, 3]"); let perm10 = Permutation::::rotate_n(2); assert_eq!(perm10.to_string(), "[8, 9, 0, 1, 2, 3, 4, 5, 6, 7]"); let perm11 = Permutation::::rotate_n(3); assert_eq!( perm11.to_string(), "[08, 09, 10, 00, 01, 02, 03, 04, 05, 06, 07]" ); } #[test] pub fn test_cycle() { let perm = Permutation::::rotate_right(); let generator = perm.generate_cycle(); let vec = generator.map(|x| x.0).collect_vec(); assert_eq!(vec![119, 98, 112, 86, 0], vec); } #[test] pub fn test_combine() { let mut combinations = [Permutation::::default(); 576]; let mut i = 0; for p_left in Permutation::::all() { for p_right in Permutation::::all() { let combined1 = p_left.combine(&p_right); combinations[i] = combined1; i += 1; } } insta::assert_snapshot!(combinations .map(|x| format!("{:?}", x.swaps_array())) .join("\n")); } #[test] pub fn test_calculate_incomplete() { let actual = Permutation::::calculate_incomplete(&[1, 2, 2, 3, 2]); let expected = Permutation::::calculate_unchecked([0, 1, 2, 4, 3], |x| *x); assert_eq!(actual, expected); } #[test] pub fn find_anagrams() { let anagram = Permutation::::calculate_incomplete("anagram".as_bytes()); let admiral = Permutation::::calculate_incomplete("admiral".as_bytes()); assert_eq!(anagram, admiral.invert()); let anagrams = Permutation::::calculate_incomplete("anagrams".as_bytes()); assert_eq!(anagram, anagrams); //extra characters are ignored let anagr = Permutation::::calculate_incomplete("anagr".as_bytes()); let anag = Permutation::::calculate_incomplete("anag".as_bytes()); assert_eq!(anagr, anag); //extra characters are ignored } #[test] pub fn test_bytes() { fn test_bytes1(u: &mut Unstructured<'_>) -> Result<(), arbitrary::Error> { let perm = u.arbitrary::>()?; let bytes: [u8; 3] = perm.to_le_byte_array(); let perm2 = Permutation::::try_from_le_byte_array(&bytes).unwrap(); assert_eq!(perm, perm2); Ok(()) } arbtest(|u|test_bytes1(u)); } #[test] pub fn test_inner() { fn test_inner1(u: &mut Unstructured<'_>) -> Result<(), arbitrary::Error> { let perm = u.arbitrary::>()?; assert_eq!(perm.0, perm.inner()); assert_eq!(perm.0 == 0, perm.is_default()); assert_eq!(perm, Permutation::::try_from_inner(&perm.0).unwrap()); Ok(()) } arbtest(|u|test_inner1(u)); } #[test] pub fn test_swaps() { fn test_swaps1(u: &mut Unstructured<'_>) -> Result<(), arbitrary::Error> { let perm = u.arbitrary::>()?; let swaps = perm.swaps_array(); assert_eq!( swaps.into_iter().collect_vec(), perm.swaps().pad_using(4, |_| 0).collect_vec() ); let ordering2 = Permutation::::from_swaps(swaps.into_iter()); assert_eq!(perm, ordering2); Ok(()) } arbtest(|u|test_swaps1(u)); } #[test] pub fn test_invert() { for permutation in Permutation::::all() { let arr = permutation.get_array(); let inverse = permutation.invert(); let mut arr2 = arr; inverse.apply(&mut arr2); let new_perm = Permutation::::try_calculate(arr2, |&x| x).unwrap(); assert_eq!(0, new_perm.0); } } #[test] pub fn test_apply_inverse() { for permutation in Permutation::::all() { let mut arr = permutation.get_array(); permutation.apply_inverse(&mut arr); assert_eq!(arr, Permutation::::DEFAULT_ARRAY); } } #[test] pub fn test_element_at_index() { type Perm = Permutation; for perm in Perm::all() { let mut arr = Perm::DEFAULT_ARRAY; perm.apply(&mut arr); let mut arr2 = Perm::DEFAULT_ARRAY; for index in 0..4 { let element = perm.element_at_index(index, |x| x); arr2[index as usize] = element; } assert_eq!(arr, arr2); } } #[test] pub fn test_index_of() { for perm in Permutation::::all() { let mut arr = [0, 1, 2, 3]; perm.apply(&mut arr); let mut arr1 = [0, 1, 2, 3]; let mut arr2 = [0, 1, 2, 3]; for index in 0..4u8 { arr1[index as usize] = arr .iter() .enumerate() .find(|(_, x)| x == &&index) .unwrap() .0 as u8; arr2[index as usize] = perm.index_of(&index, |&x| x); } assert_eq!(arr1, arr2); } } #[test] pub fn all_possible_orderings_are_unique() { let mut set: HashSet<[u8; 4]> = std::collections::HashSet::default(); for perm in Permutation::::all() { let arr = perm.get_array(); let added = set.insert(arr); assert!(added); } assert_eq!(set.len(), 24); } #[test] pub fn test_calculate() { for perm in Permutation::::all() { let arr = perm.get_array(); let calculated = Permutation::::try_calculate(arr, |x| *x).unwrap(); assert_eq!(perm, calculated); } } #[test] pub fn test_calculate_with_duplicate() { let r = Permutation::::try_calculate([0, 1, 2, 2], |x| *x); assert_eq!(r, None) } #[test_case(0, "0123")] #[test_case(1, "1023")] #[test_case(2, "2103")] #[test_case(3, "3120")] #[test_case(4, "0213")] #[test_case(5, "1203")] pub fn should_order_correctly(o: u8, expected: &str) -> Result<(), anyhow::Error> { let permutation: Permutation = Permutation(o); let mut arr = [0, 1, 2, 3]; permutation.apply(&mut arr); let actual = arr.into_iter().map(|x| x.to_string()).join(""); assert_eq!(expected, actual); Ok(()) } macro_rules! test_max { ($name: ident, $inner:ty, $max_elements:tt) => { #[test] pub fn $name() { let permutation = Permutation::<$inner, $max_elements>::get_last(); //This orders arrays like [3,0,1,2] - effectively rotating them let index_of_0 = permutation.index_of(&0, |&x| x); assert_eq!(index_of_0, 1); let element_at_0 = permutation.element_at_index(0, |x| x); assert_eq!(element_at_0, $max_elements - 1); } }; } test_max!(test_max_u8, u8, 5); test_max!(test_max_u16, u16, 8); test_max!(test_max_u32, u32, 12); test_max!(test_max_u64, u64, 20); test_max!(test_max_u128, u128, 34); #[test] fn test_ser_de() { use serde_test::{assert_tokens, Token}; let perm = Permutation::::calculate_incomplete(&[2, 0, 1, 3]); assert_tokens(&perm, &[Token::U8(6)]); } }