/*{ "CATEGORIES": [ "Dissolve" ], "CREDIT": "Automatically converted from https://www.github.com/gl-transitions/gl-transitions/tree/master/luminance_melt.glsl", "DESCRIPTION": "", "INPUTS": [ { "NAME": "startImage", "TYPE": "image" }, { "NAME": "endImage", "TYPE": "image" }, { "DEFAULT": 0, "MAX": 1, "MIN": 0, "NAME": "progress", "TYPE": "float" }, { "DEFAULT": true, "NAME": "direction", "TYPE": "bool" }, { "DEFAULT": 0.8, "MAX": 1, "MIN": 0, "NAME": "l_threshold", "TYPE": "float" }, { "NAME": "above", "TYPE": "bool" } ], "ISFVSN": "2" } */ vec4 getFromColor(vec2 inUV) { return IMG_NORM_PIXEL(startImage, inUV); } vec4 getToColor(vec2 inUV) { return IMG_NORM_PIXEL(endImage, inUV); } // Author: 0gust1 // License: MIT //My own first transition — based on crosshatch code (from pthrasher), using simplex noise formula (copied and pasted) //-> cooler with high contrasted images (isolated dark subject on light background f.e.) //TODO : try to rebase it on DoomTransition (from zeh)? //optimizations : //luminance (see http://stackoverflow.com/questions/596216/formula-to-determine-brightness-of-rgb-color#answer-596241) // Y = (R+R+B+G+G+G)/6 //or Y = (R+R+R+B+G+G+G+G)>>3 //direction of movement : 0 : up, 1, down //luminance threshold //does the movement takes effect above or below luminance threshold ? //Random function borrowed from everywhere float rand(vec2 co){ return fract(sin(dot(co.xy ,vec2(12.9898,78.233))) * 43758.5453); } // Simplex noise : // Description : Array and textureless GLSL 2D simplex noise function. // Author : Ian McEwan, Ashima Arts. // Maintainer : ijm // Lastmod : 20110822 (ijm) // License : MIT // 2011 Ashima Arts. All rights reserved. // Distributed under the MIT License. See LICENSE file. // https://github.com/ashima/webgl-noise // vec3 mod289(vec3 x) { return x - floor(x * (1.0 / 289.0)) * 289.0; } vec2 mod289(vec2 x) { return x - floor(x * (1.0 / 289.0)) * 289.0; } vec3 permute(vec3 x) { return mod289(((x*34.0)+1.0)*x); } float snoise(vec2 v) { const vec4 C = vec4(0.211324865405187, // (3.0-sqrt(3.0))/6.0 0.366025403784439, // 0.5*(sqrt(3.0)-1.0) -0.577350269189626, // -1.0 + 2.0 * C.x 0.024390243902439); // 1.0 / 41.0 // First corner vec2 i = floor(v + dot(v, C.yy) ); vec2 x0 = v - i + dot(i, C.xx); // Other corners vec2 i1; //i1.x = step( x0.y, x0.x ); // x0.x > x0.y ? 1.0 : 0.0 //i1.y = 1.0 - i1.x; i1 = (x0.x > x0.y) ? vec2(1.0, 0.0) : vec2(0.0, 1.0); // x0 = x0 - 0.0 + 0.0 * C.xx ; // x1 = x0 - i1 + 1.0 * C.xx ; // x2 = x0 - 1.0 + 2.0 * C.xx ; vec4 x12 = x0.xyxy + C.xxzz; x12.xy -= i1; // Permutations i = mod289(i); // Avoid truncation effects in permutation vec3 p = permute( permute( i.y + vec3(0.0, i1.y, 1.0 )) + i.x + vec3(0.0, i1.x, 1.0 )); vec3 m = max(0.5 - vec3(dot(x0,x0), dot(x12.xy,x12.xy), dot(x12.zw,x12.zw)), 0.0); m = m*m ; m = m*m ; // Gradients: 41 points uniformly over a line, mapped onto a diamond. // The ring size 17*17 = 289 is close to a multiple of 41 (41*7 = 287) vec3 x = 2.0 * fract(p * C.www) - 1.0; vec3 h = abs(x) - 0.5; vec3 ox = floor(x + 0.5); vec3 a0 = x - ox; // Normalise gradients implicitly by scaling m // Approximation of: m *= inversesqrt( a0*a0 + h*h ); m *= 1.79284291400159 - 0.85373472095314 * ( a0*a0 + h*h ); // Compute final noise value at P vec3 g; g.x = a0.x * x0.x + h.x * x0.y; g.yz = a0.yz * x12.xz + h.yz * x12.yw; return 130.0 * dot(m, g); } // Simplex noise -- end float luminance(vec4 color){ //(0.299*R + 0.587*G + 0.114*B) return color.r*0.299+color.g*0.587+color.b*0.114; } vec2 center = vec2(1.0, direction); vec4 transition(vec2 uv) { vec2 p = uv.xy / vec2(1.0).xy; if (progress == 0.0) { return getFromColor(p); } else if (progress == 1.0) { return getToColor(p); } else { float x = progress; float dist = distance(center, p)- progress*exp(snoise(vec2(p.x, 0.0))); float r = x - rand(vec2(p.x, 0.1)); float m; if(above){ m = dist <= r && luminance(getFromColor(p))>l_threshold ? 1.0 : (progress*progress*progress); } else{ m = dist <= r && luminance(getFromColor(p))