[package] name = "jiro_nn" version = "0.8.1" edition = "2021" license = "MIT OR Apache-2.0" description = "Neural Networks framework with model building & data preprocessing features." readme = "README.md" repository = "https://github.com/AnicetNgrt/jiro-nn" keywords = [ "machine-learning", "neural-networks", "gradient-descent", "data-science", "data-analysis", ] categories = ["science"] exclude = [ ".vscode/*", "examples/**/*", ] [dependencies] nalgebra-glm = { version = "0.18.0", optional = true } nalgebra = { version = "0.32.2", optional = true, features = ["rand", "rayon"] } libm = "0.2.6" # https://pola-rs.github.io/polars-book/user-guide/installation/#rust polars = { version = "0.28.0", optional = true, default-features = false, features = ["fmt", "json", "lazy", "streaming", "describe"] } rand = "0.8.5" rand_distr = "0.4.3" serde = { version = "1.0.159", features = ["derive"] } serde-aux = "4.2.0" serde_json = "1.0.95" sha2 = "0.10.6" assert_float_eq = "1.1.3" arrayfire = { version = "3.8.0", optional = true } bincode = "1.3.3" flate2 = "1.0.26" lazy_static = "1.4.0" ndarray = { version = "0.15.3", optional = true } convolutions-rs = { version = "0.3.4", optional = true } [features] default = ["ndarray", "data"] parquet = ["polars?/parquet"] ipc = ["polars?/ipc"] data = ["dep:polars"] ndarray = ["dep:ndarray", "dep:convolutions-rs"] nalgebra = ["dep:nalgebra", "dep:nalgebra-glm"] arrayfire = ["dep:arrayfire"] f64 = []