// Copyright (c) the JPEG XL Project Authors. All rights reserved. // // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. #ifndef LIB_JXL_PROGRESSIVE_SPLIT_H_ #define LIB_JXL_PROGRESSIVE_SPLIT_H_ #include #include #include #include #include #include "lib/jxl/ac_strategy.h" #include "lib/jxl/base/compiler_specific.h" #include "lib/jxl/base/status.h" #include "lib/jxl/chroma_from_luma.h" #include "lib/jxl/common.h" // kMaxNumPasses #include "lib/jxl/dct_util.h" #include "lib/jxl/frame_header.h" #include "lib/jxl/image.h" #include "lib/jxl/image_ops.h" #include "lib/jxl/splines.h" // Functions to split DCT coefficients in multiple passes. All the passes of a // single frame are added together. namespace jxl { constexpr size_t kNoDownsamplingFactor = std::numeric_limits::max(); struct PassDefinition { // Side of the square of the coefficients that should be kept in each 8x8 // block. Must be greater than 1, and at most 8. Should be in non-decreasing // order. size_t num_coefficients; // How much to shift the encoded values by, with rounding. size_t shift; // If specified, this indicates that if the requested downsampling factor is // sufficiently high, then it is fine to stop decoding after this pass. // By default, passes are not marked as being suitable for any downsampling. size_t suitable_for_downsampling_of_at_least; }; struct ProgressiveMode { size_t num_passes = 1; PassDefinition passes[kMaxNumPasses] = { PassDefinition{/*num_coefficients=*/8, /*shift=*/0, /*suitable_for_downsampling_of_at_least=*/1}}; ProgressiveMode() = default; template explicit ProgressiveMode(const PassDefinition (&p)[nump]) { JXL_ASSERT(nump <= kMaxNumPasses); num_passes = nump; PassDefinition previous_pass{ /*num_coefficients=*/1, /*shift=*/0, /*suitable_for_downsampling_of_at_least=*/kNoDownsamplingFactor}; size_t last_downsampling_factor = kNoDownsamplingFactor; for (size_t i = 0; i < nump; i++) { JXL_ASSERT(p[i].num_coefficients > previous_pass.num_coefficients || (p[i].num_coefficients == previous_pass.num_coefficients && p[i].shift < previous_pass.shift)); JXL_ASSERT(p[i].suitable_for_downsampling_of_at_least == kNoDownsamplingFactor || p[i].suitable_for_downsampling_of_at_least <= last_downsampling_factor); // Only used inside assert. (void)last_downsampling_factor; if (p[i].suitable_for_downsampling_of_at_least != kNoDownsamplingFactor) { last_downsampling_factor = p[i].suitable_for_downsampling_of_at_least; } previous_pass = passes[i] = p[i]; } } }; class ProgressiveSplitter { public: void SetProgressiveMode(ProgressiveMode mode) { mode_ = mode; } size_t GetNumPasses() const { return mode_.num_passes; } void InitPasses(Passes* JXL_RESTRICT passes) const { passes->num_passes = static_cast(GetNumPasses()); passes->num_downsample = 0; JXL_ASSERT(passes->num_passes != 0); passes->shift[passes->num_passes - 1] = 0; if (passes->num_passes == 1) return; // Done, arrays are empty for (uint32_t i = 0; i < mode_.num_passes - 1; ++i) { const size_t min_downsampling_factor = mode_.passes[i].suitable_for_downsampling_of_at_least; passes->shift[i] = mode_.passes[i].shift; if (1 < min_downsampling_factor && min_downsampling_factor != kNoDownsamplingFactor) { passes->downsample[passes->num_downsample] = min_downsampling_factor; passes->last_pass[passes->num_downsample] = i; if (mode_.passes[i + 1].suitable_for_downsampling_of_at_least < min_downsampling_factor) { passes->num_downsample += 1; } } } } template void SplitACCoefficients(const T* JXL_RESTRICT block, const AcStrategy& acs, size_t bx, size_t by, T* JXL_RESTRICT output[kMaxNumPasses]); private: ProgressiveMode mode_; }; extern template void ProgressiveSplitter::SplitACCoefficients( const int32_t* JXL_RESTRICT, const AcStrategy&, size_t, size_t, int32_t* JXL_RESTRICT[kMaxNumPasses]); extern template void ProgressiveSplitter::SplitACCoefficients( const int16_t* JXL_RESTRICT, const AcStrategy&, size_t, size_t, int16_t* JXL_RESTRICT[kMaxNumPasses]); } // namespace jxl #endif // LIB_JXL_PROGRESSIVE_SPLIT_H_