// Copyright 2019 Google LLC // SPDX-License-Identifier: Apache-2.0 // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "hwy/nanobenchmark.h" #include #include #include // clock_gettime #include // std::sort, std::find_if #include // std::iota #include #include #include "hwy/robust_statistics.h" #include "hwy/timer-inl.h" #include "hwy/timer.h" namespace hwy { namespace { namespace timer = hwy::HWY_NAMESPACE::timer; static const timer::Ticks timer_resolution = platform::TimerResolution(); // Estimates the expected value of "lambda" values with a variable number of // samples until the variability "rel_mad" is less than "max_rel_mad". template timer::Ticks SampleUntilStable(const double max_rel_mad, double* rel_mad, const Params& p, const Lambda& lambda) { // Choose initial samples_per_eval based on a single estimated duration. timer::Ticks t0 = timer::Start(); lambda(); timer::Ticks t1 = timer::Stop(); // Caller checks HaveTimerStop timer::Ticks est = t1 - t0; static const double ticks_per_second = platform::InvariantTicksPerSecond(); const size_t ticks_per_eval = static_cast(ticks_per_second * p.seconds_per_eval); size_t samples_per_eval = est == 0 ? p.min_samples_per_eval : static_cast(ticks_per_eval / est); samples_per_eval = HWY_MAX(samples_per_eval, p.min_samples_per_eval); std::vector samples; samples.reserve(1 + samples_per_eval); samples.push_back(est); // Percentage is too strict for tiny differences, so also allow a small // absolute "median absolute deviation". const timer::Ticks max_abs_mad = (timer_resolution + 99) / 100; *rel_mad = 0.0; // ensure initialized for (size_t eval = 0; eval < p.max_evals; ++eval, samples_per_eval *= 2) { samples.reserve(samples.size() + samples_per_eval); for (size_t i = 0; i < samples_per_eval; ++i) { t0 = timer::Start(); lambda(); t1 = timer::Stop(); // Caller checks HaveTimerStop samples.push_back(t1 - t0); } if (samples.size() >= p.min_mode_samples) { est = robust_statistics::Mode(samples.data(), samples.size()); } else { // For "few" (depends also on the variance) samples, Median is safer. est = robust_statistics::Median(samples.data(), samples.size()); } NANOBENCHMARK_CHECK(est != 0); // Median absolute deviation (mad) is a robust measure of 'variability'. const timer::Ticks abs_mad = robust_statistics::MedianAbsoluteDeviation( samples.data(), samples.size(), est); *rel_mad = static_cast(abs_mad) / static_cast(est); if (*rel_mad <= max_rel_mad || abs_mad <= max_abs_mad) { if (p.verbose) { printf("%6d samples => %5d (abs_mad=%4d, rel_mad=%4.2f%%)\n", static_cast(samples.size()), static_cast(est), static_cast(abs_mad), *rel_mad * 100.0); } return est; } } if (p.verbose) { printf("WARNING: rel_mad=%4.2f%% still exceeds %4.2f%% after %6d samples\n", *rel_mad * 100.0, max_rel_mad * 100.0, static_cast(samples.size())); } return est; } using InputVec = std::vector; // Returns vector of unique input values. InputVec UniqueInputs(const FuncInput* inputs, const size_t num_inputs) { InputVec unique(inputs, inputs + num_inputs); std::sort(unique.begin(), unique.end()); unique.erase(std::unique(unique.begin(), unique.end()), unique.end()); return unique; } // Returns how often we need to call func for sufficient precision. size_t NumSkip(const Func func, const uint8_t* arg, const InputVec& unique, const Params& p) { // Min elapsed ticks for any input. timer::Ticks min_duration = ~timer::Ticks(0); for (const FuncInput input : unique) { double rel_mad; const timer::Ticks total = SampleUntilStable( p.target_rel_mad, &rel_mad, p, [func, arg, input]() { PreventElision(func(arg, input)); }); min_duration = HWY_MIN(min_duration, total - timer_resolution); } // Number of repetitions required to reach the target resolution. const size_t max_skip = p.precision_divisor; // Number of repetitions given the estimated duration. const size_t num_skip = min_duration == 0 ? 0 : static_cast((max_skip + min_duration - 1) / min_duration); if (p.verbose) { printf("res=%d max_skip=%d min_dur=%d num_skip=%d\n", static_cast(timer_resolution), static_cast(max_skip), static_cast(min_duration), static_cast(num_skip)); } return num_skip; } // Replicates inputs until we can omit "num_skip" occurrences of an input. InputVec ReplicateInputs(const FuncInput* inputs, const size_t num_inputs, const size_t num_unique, const size_t num_skip, const Params& p) { InputVec full; if (num_unique == 1) { full.assign(p.subset_ratio * num_skip, inputs[0]); return full; } full.reserve(p.subset_ratio * num_skip * num_inputs); for (size_t i = 0; i < p.subset_ratio * num_skip; ++i) { full.insert(full.end(), inputs, inputs + num_inputs); } std::mt19937 rng; std::shuffle(full.begin(), full.end(), rng); return full; } // Copies the "full" to "subset" in the same order, but with "num_skip" // randomly selected occurrences of "input_to_skip" removed. void FillSubset(const InputVec& full, const FuncInput input_to_skip, const size_t num_skip, InputVec* subset) { const size_t count = static_cast(std::count(full.begin(), full.end(), input_to_skip)); // Generate num_skip random indices: which occurrence to skip. std::vector omit(count); std::iota(omit.begin(), omit.end(), 0); // omit[] is the same on every call, but that's OK because they identify the // Nth instance of input_to_skip, so the position within full[] differs. std::mt19937 rng; std::shuffle(omit.begin(), omit.end(), rng); omit.resize(num_skip); std::sort(omit.begin(), omit.end()); uint32_t occurrence = ~0u; // 0 after preincrement size_t idx_omit = 0; // cursor within omit[] size_t idx_subset = 0; // cursor within *subset for (const FuncInput next : full) { if (next == input_to_skip) { ++occurrence; // Haven't removed enough already if (idx_omit < num_skip) { // This one is up for removal if (occurrence == omit[idx_omit]) { ++idx_omit; continue; } } } if (idx_subset < subset->size()) { (*subset)[idx_subset++] = next; } } NANOBENCHMARK_CHECK(idx_subset == subset->size()); NANOBENCHMARK_CHECK(idx_omit == omit.size()); NANOBENCHMARK_CHECK(occurrence == count - 1); } // Returns total ticks elapsed for all inputs. timer::Ticks TotalDuration(const Func func, const uint8_t* arg, const InputVec* inputs, const Params& p, double* max_rel_mad) { double rel_mad; const timer::Ticks duration = SampleUntilStable(p.target_rel_mad, &rel_mad, p, [func, arg, inputs]() { for (const FuncInput input : *inputs) { PreventElision(func(arg, input)); } }); *max_rel_mad = HWY_MAX(*max_rel_mad, rel_mad); return duration; } // (Nearly) empty Func for measuring timer overhead/resolution. HWY_NOINLINE FuncOutput EmptyFunc(const void* /*arg*/, const FuncInput input) { return input; } // Returns overhead of accessing inputs[] and calling a function; this will // be deducted from future TotalDuration return values. timer::Ticks Overhead(const uint8_t* arg, const InputVec* inputs, const Params& p) { double rel_mad; // Zero tolerance because repeatability is crucial and EmptyFunc is fast. return SampleUntilStable(0.0, &rel_mad, p, [arg, inputs]() { for (const FuncInput input : *inputs) { PreventElision(EmptyFunc(arg, input)); } }); } } // namespace HWY_DLLEXPORT int Unpredictable1() { return timer::Start() != ~0ULL; } HWY_DLLEXPORT size_t Measure(const Func func, const uint8_t* arg, const FuncInput* inputs, const size_t num_inputs, Result* results, const Params& p) { NANOBENCHMARK_CHECK(num_inputs != 0); char cpu100[100]; if (!platform::HaveTimerStop(cpu100)) { fprintf(stderr, "CPU '%s' does not support RDTSCP, skipping benchmark.\n", cpu100); return 0; } const InputVec& unique = UniqueInputs(inputs, num_inputs); const size_t num_skip = NumSkip(func, arg, unique, p); // never 0 if (num_skip == 0) return 0; // NumSkip already printed error message // (slightly less work on x86 to cast from signed integer) const float mul = 1.0f / static_cast(static_cast(num_skip)); const InputVec& full = ReplicateInputs(inputs, num_inputs, unique.size(), num_skip, p); InputVec subset(full.size() - num_skip); const timer::Ticks overhead = Overhead(arg, &full, p); const timer::Ticks overhead_skip = Overhead(arg, &subset, p); if (overhead < overhead_skip) { fprintf(stderr, "Measurement failed: overhead %d < %d\n", static_cast(overhead), static_cast(overhead_skip)); return 0; } if (p.verbose) { printf("#inputs=%5d,%5d overhead=%5d,%5d\n", static_cast(full.size()), static_cast(subset.size()), static_cast(overhead), static_cast(overhead_skip)); } double max_rel_mad = 0.0; const timer::Ticks total = TotalDuration(func, arg, &full, p, &max_rel_mad); for (size_t i = 0; i < unique.size(); ++i) { FillSubset(full, unique[i], num_skip, &subset); const timer::Ticks total_skip = TotalDuration(func, arg, &subset, p, &max_rel_mad); if (total < total_skip) { fprintf(stderr, "Measurement failed: total %f < %f\n", static_cast(total), static_cast(total_skip)); return 0; } const timer::Ticks duration = (total - overhead) - (total_skip - overhead_skip); results[i].input = unique[i]; results[i].ticks = static_cast(duration) * mul; results[i].variability = static_cast(max_rel_mad); } return unique.size(); } } // namespace hwy