#!/usr/bin/python # Copyright (c) the JPEG XL Project Authors. All rights reserved. # # Use of this source code is governed by a BSD-style # license that can be found in the LICENSE file. """Implementation of simplex search for an external process. The external process gets the input vector through environment variables. Input of vector as setenv("VAR%dimension", val) Getting the optimized function with regexp match from stdout of the forked process. https://en.wikipedia.org/wiki/Nelder%E2%80%93Mead_method start as ./simplex_fork.py binary dimensions amount """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from six.moves import range import copy import os import random import re import subprocess import sys def Midpoint(simplex): """Nelder-Mead-like simplex midpoint calculation.""" simplex.sort() dim = len(simplex) - 1 retval = [None] + [0.0] * dim for i in range(1, dim + 1): for k in range(dim): retval[i] += simplex[k][i] retval[i] /= dim return retval def Subtract(a, b): """Vector arithmetic, with [0] being ignored.""" return [None if k == 0 else a[k] - b[k] for k in range(len(a))] def Add(a, b): """Vector arithmetic, with [0] being ignored.""" return [None if k == 0 else a[k] + b[k] for k in range(len(a))] def Average(a, b): """Vector arithmetic, with [0] being ignored.""" return [None if k == 0 else 0.5 * (a[k] + b[k]) for k in range(len(a))] eval_hash = {} g_best_val = None def EvalCacheForget(): global eval_hash eval_hash = {} def RandomizedJxlCodecs(): retval = [] minval = 0.2 maxval = 9.3 rangeval = maxval/minval steps = 13 for i in range(steps): mul = minval * rangeval**(float(i)/(steps - 1)) mul *= 0.99 + 0.05 * random.random() retval.append("jxl:d%.4f" % mul) for i in range(steps - 1): mul = minval * rangeval**(float(i+0.5)/(steps - 1)) mul *= 0.99 + 0.05 * random.random() retval.append("jxl:d%.4f" % mul) return ",".join(retval) g_codecs = RandomizedJxlCodecs() def Eval(vec, binary_name, cached=True): """Evaluates the objective function by forking a process. Args: vec: [0] will be set to the objective function, [1:] will contain the vector position for the objective function. binary_name: the name of the binary that evaluates the value. """ global eval_hash global g_codecs global g_best_val key = "" # os.environ["BUTTERAUGLI_OPTIMIZE"] = "1" for i in range(300): os.environ["VAR%d" % i] = "0" for i in range(len(vec) - 1): os.environ["VAR%d" % i] = str(vec[i + 1]) key += str(vec[i + 1]) + ":" if cached and (key in eval_hash): vec[0] = eval_hash[key] return process = subprocess.Popen( (binary_name, '--input', '/usr/local/google/home/jyrki/newcorpus/split/*.png', '--error_pnorm=3.0', '--more_columns', '--codec', g_codecs), stdout=subprocess.PIPE, stderr=subprocess.PIPE, env=dict(os.environ)) # process.wait() found_score = False vec[0] = 1.0 dct2 = 0.0 dct4 = 0.0 dct16 = 0.0 dct32 = 0.0 n = 0 for line in process.communicate(input=None)[0].splitlines(): print("BE", line) sys.stdout.flush() if line[0:3] == b'jxl': bpp = line.split()[3] dist_pnorm = line.split()[9] dist_max = line.split()[6] vec[0] *= float(dist_pnorm) * float(bpp) / 16.0 #vec[0] *= (float(dist_max) * float(bpp) / 16.0) ** 0.01 n += 1 found_score = True distance = float(line.split()[0].split(b'd')[-1]) faultybpp = 1.0 + 0.43 * ((float(bpp) * distance ** 0.69) - 1.64) ** 2 vec[0] *= faultybpp print("eval: ", vec) if (vec[0] <= 0.0): vec[0] = 1e30 if found_score: eval_hash[key] = vec[0] if not g_best_val or vec[0] < g_best_val: g_best_val = vec[0] print("\nSaving best simplex\n") with open("best_simplex.txt", "w") as f: print(vec, file=f) return vec[0] = 1e33 return # sys.exit("awful things happened") def Reflect(simplex, binary): """Main iteration step of Nelder-Mead optimization. Modifies `simplex`.""" simplex.sort() last = simplex[-1] mid = Midpoint(simplex) diff = Subtract(mid, last) mirrored = Add(mid, diff) Eval(mirrored, binary) if mirrored[0] > simplex[-2][0]: print("\nStill worst\n\n") # Still the worst, shrink towards the best. shrinking = Average(simplex[-1], simplex[0]) Eval(shrinking, binary) print("\nshrinking...\n\n") simplex[-1] = shrinking return if mirrored[0] < simplex[0][0]: # new best print("\nNew Best\n\n") even_further = Add(mirrored, diff) Eval(even_further, binary) if even_further[0] < mirrored[0]: print("\nEven Further\n\n") mirrored = even_further simplex[-1] = mirrored # try to extend return else: # not a best, not a worst point simplex[-1] = mirrored def OneDimensionalSearch(simplex, shrink, index): # last appended was better than the best so far, try to replace it last_attempt = simplex[-1][:] best = simplex[0] if last_attempt[0] < best[0]: # try expansion of the amount diff = simplex[-1][index] - simplex[0][index] simplex[-1][index] = simplex[0][index] + shrink * diff Eval(simplex[-1], g_binary) if simplex[-1][0] < last_attempt[0]: # it got better return True elif last_attempt[0] >= 0: diff = simplex[-1][index] - simplex[0][index] simplex[-1][index] = simplex[0][index] - diff Eval(simplex[-1], g_binary) if simplex[-1][0] < last_attempt[0]: # it got better return True simplex[-1] = last_attempt return False def InitialSimplex(vec, dim, amount): """Initialize the simplex at origin.""" EvalCacheForget() best = vec[:] Eval(best, g_binary) retval = [best] comp_order = list(range(1, dim + 1)) random.shuffle(comp_order) for i in range(dim): index = comp_order[i] best = retval[0][:] best[index] += amount Eval(best, g_binary) retval.append(best) do_shrink = True while OneDimensionalSearch(retval, 2.0, index): print("OneDimensionalSearch-Grow") while OneDimensionalSearch(retval, 1.1, index): print("OneDimensionalSearch-SlowGrow") do_shrink = False if do_shrink: while OneDimensionalSearch(retval, 0.9, index): print("OneDimensionalSearch-SlowShrinking") retval.sort() return retval if len(sys.argv) != 4: print("usage: ", sys.argv[0], "binary-name number-of-dimensions simplex-size") exit(1) g_dim = int(sys.argv[2]) g_amount = float(sys.argv[3]) g_binary = sys.argv[1] g_simplex = InitialSimplex([None] + [0.0] * g_dim, g_dim, 7.0 * g_amount) best = g_simplex[0][:] g_codecs = RandomizedJxlCodecs() g_simplex = InitialSimplex(best, g_dim, g_amount * 2.47) best = g_simplex[0][:] g_simplex = InitialSimplex(best, g_dim, g_amount) best = g_simplex[0][:] g_simplex = InitialSimplex(best, g_dim, g_amount * 0.33) best = g_simplex[0][:] for restarts in range(99999): for ii in range(g_dim * 5): g_simplex.sort() print("reflect", ii, g_simplex[0]) Reflect(g_simplex, g_binary) mulli = 0.1 + 15 * random.random()**2.0 g_codecs = RandomizedJxlCodecs() print("\n\n\nRestart", restarts, "mulli", mulli) g_simplex.sort() best = g_simplex[0][:] g_simplex = InitialSimplex(best, g_dim, g_amount * mulli)